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_____________________________________________________________________________________________________ 

Abstract - This paper reveals that the thermal noise implies large fluctuations of the phase-angle difference between the 

rotors, but synchronization prevails and the ensemble-averaged time dependence of the phase-angle difference agrees 

well with analytical predictions. Moreover, we demonstrate that compressibility effects lead to longer synchronization 

times. In addition, the relevance of the inertia terms of the Navier–Stokes equation are discussed, specifically the linear 

unsteady acceleration term characterized by the oscillatory Reynolds number ReT. We illustrate the continuous 

breakdown of synchronization with the Reynolds number ReT, in analogy to the continuous breakdown of the scallop 

theorem with decreasing Reynolds number. 

keywords - Navier-Stokes, Reynolds number, compressible, incompressible, etc. 

_____________________________________________________________________________________________________ 

 

Introduction 

The Multiparticle collision dynamics fluid consists of N point particles of mass m with the positions ri and 

velocities vi (i = 1, …, N), which interact with each other by a stochastic, momentum-conserving process. The particle 

dynamics proceed in two steps—streaming and collision. In the ballistic streaming step, the particle positions are 

updated via  

ri(t + h) = ri(t) + hvi(t), (1) 

where h is the collision time step. In the collision step the simulation box is partitioned into cubic cells of length a, in 

which multiparticle collisions are performed. In the SRD version of MPC,1 the relative velocity of each particle, with 

respect to the center-of-mass velocity of the cell, is rotated by a fixed angle α around a randomly oriented axis. Hence, 

the new velocities are  

vi(t + h) = vcm(t) + R(α)[vi(t) − vcm(t)], (2) 

where R(α) is the rotation matrix,2 

  

 

(3) 

is the center-of-mass velocity, and Nc the total number of particles in the cell. In its original version, MPC violates Galilean invariance. 

It is restored by a random shift of the collision grid at every step.3 

The collision rule (2) violates angular momentum conservation, which is associated with a non-symmetric stress tensor. Angular 

momentum conservation is reestablished on the cell level by a solid-body type rotation of relative velocities after a collision according 

to 

  

 

(4) 

where I is the moment of inertia tensor of the particles in the center-of-mass reference frame; ri,c(t) and vi,c(t) are the respective relative 

positions and velocities after streaming, i.e., ri,c = ri − rcm and vi,c = vi − vcm, with the center-of-mass position rcm. 

In order to simulate an isothermal fluid, a collision-cell-based, local Maxwellian thermostat is applied, where the relative velocities 

of the particles in a cell are scaled according to the Maxwell–Boltzmann scaling (MBS) method. 

We adopt the rotor model: two beads of radius RH move along circles of radius R, each driven by an active 

force Fi (cf.Fig. 1). The two circles are centered at Ri0 = (−1)i(d/2)ex (i = 1, 2), where êx is the unit vector along the x-axis 

and d the center-to-center distance; both beads are confined in the xy-plane. The trajectories of the bead centers can be 

expressed as  

Ri(t) = Ri0 + (R cos φi(t), R sin φi(t), 0)T, (5) 

in terms of the phase angles φi(t). The driving forces  

Fi(t) = F i(t) (6) 

are of equal magnitude and point along the tangents i(t) of the trajectories, where  
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i(t) = (−sin φi(t), cos φi(t), 0)T. (7) 

 

 

 Fig. 1 Model system of hydrodynamically coupled rotors.4 Two beads move along fixed circular trajectories, each driven by a 

constant tangential force F. 
 

The coupling of the beads with the MPC solvent is established in the collision step.5 Thereby, the beads are treated as 

fluid particles with the mass M. Thus, in cells with a bead the center-of-mass velocity is given by  

 

(8) 

The velocity V(t + h) of the bead after a collision follows according to eqn (2) or (4), respectively, taking into account the 

appropriate mass M. 

Hence, the phase angles evolve as  

 

(9) 

between MPC collisions. In a collision, the angular velocities change. The new values after a collision follow from the 

relation  

 

(10) 

All simulations are performed with the rotation angle α = 130°, the mean number of particles per collision cell 〈Nc〉 = 10, and 

the collision step , where Θ is the temperature and kB the Boltzmann constant. This yields the 

viscosity  for the non-angular momentum conserving MPC variant (2).6 For a rotor, we choose M = 10m, 

which yields the bead diffusion coefficient  and the hydrodynamics radius RH = kBΘ/(6πηD0) ≈ 

0.28a assuming no-slip boundary conditions. The radius of a circle is set to R = 2a and the distance to d = 5a in terms of the MPC 

length scale. In simulations, forces in the range F/(kBΘ/a) = 10–100 are considered, which corresponds to the Péclet numbers Pe 

= FR/(kBΘ) = 20–200. 

Periodic boundary conditions are applied for the fluid, with a rectangular square–cuboid box of side lengths Lx = Ly = 100a and Lz = 

20a. 

All results presented in the following have been obtained with the non-angular momentum conserving collision rule (2). However, 

simulations confirm that these results are independent of the applied MPC variant and they agree very well with each other. 

Hydrodynamics 

As is well established, the hydrodynamic properties of the MPC fluid are excellently described by the linearized Navier–

Stokes equations on sufficiently large length and time scales. Moreover, the dynamics of the coupled rotors can be described 

analytically within the linearized Navier–Stokes equations.7 In order to establish a link between simulation results and analytical 

considerations, we will briefly describe the basic hydrodynamic background. 

Navier–Stokes equations and MPC fluid 

Mass and momentum conservation of an isothermal fluid are expressed by the continuity and the Navier–Stokes 

equation8  

 

(11) 
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(12) 

respectively. Here, ρ + δρ(r, t) denotes the mass density with its mean value ρ and its (small) fluctuations δρ(r, t) at the position r in 

space and the time t. v = v(r, t) is the fluid velocity field, f(r, t) a volume force, and σ(r, t) the stress tensor. Note that only the mean 

density ρ will appear throughout the rest of the paper. 

For the MPC fluid, the explicit form of the stress tensor depends on the lack or presence of angular momentum 

conservation during collision. In general, the stress tensor can be expressed as  

 

(13) 

with the pressure p and the Cartesian indices α, β, α′, β′ ∈ {x, y, z}. 

(i) For angular momentum conserving fluids, the standard symmetric stress tensor is obtained 

  

 

(14) 

with  

 

(15) 

in three dimensions. η denotes the shear viscosity. Note, we assume that the bulk viscosity is zero.9 

(ii) For the non-angular momentum conserving variant of the MPC approach of Sec. 2.1, the non-symmetric tensor is 

given by  

 

(16) 

with  

 

(17) 

Here, ηk and ηc are the kinetic and collisional contribution to the viscosity η = ηk + ηc. Alternative expressions for the stress tensor have 

been used, which differ from eqn (16) by a term with vanishing divergence only and thus yield the same Navier–Stokes equation.  

With the stress tensor (16), eqn (12) turns into  

 

(18) 

For angular momentum conserving fluids ηk is replaced by η in eqn (18). 

Inertia and Reynolds numbers 

In order to asses the relevance of the various terms in eqn (18), in particular the time-dependent and non-linear inertia 

terms, we scale the velocity field by a typical value V, length by L, and time by T, as usual, which yields the equation  

 

(19) 

where the primed quantities are dimensionless and of  (1). Furthermore, we introduced the Reynolds numbers  

 

(20) 

  

 

(21) 

with the kinematic viscosity ν = η/ρ. Typically, T is defined as T = L/V which yields ReT = Re, and for Re ≪ 1 the left hand side of eqn 

(19) is neglected. In particular, Re = 0 is assumed for microswimmers, which leads to peculiarities in their locomotion as expressed by 

the well-known scallop theorem.10 

The oscillatory Reynolds number ReT can be written as ReT = τν/T, with τν = L2/ν. Hence, ReT is the ratio of the viscose time 

scale τν for shear wave propagation over the distance L and the characteristic system time T. In order to establish proper hydrodynamic 

interactions, τν/T < 1 and, hence, ReT < 1. 
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Fluctuating hydrodynamics 

In the following, we focus on the linearized Navier–Stokes equation and neglect the advection term, i.e., we set Re = 0, 

but keep the unsteady acceleration term. Moreover, to account for thermal fluctuations inherent in the MPC fluid, we 

introduce a random stress tensor σR(r, t). Then, eqn (18) turns into (Landau–Lifshitz Navier–Stokes equation)  

 

(22) 

The volume force f now consists of a deterministic force fD and the random force fR = ∇·σR. The stress tensor σR is 

assumed to be a Gaussian and Markovian stochastic process with the moments  

 

(23) 

ηαβα′β′ is either given by eqn (15) or (17) depending on the applied MPC procedure. 

Taking the divergence of eqn (22) and using the linearized continuity eqn (11) together with the ideal gas equation of 

state with the velocity of sound  for an isothermal system, we obtain the wave equation  

 

(24) 

In Fourier space, eqn (22) and (24) read as  

 

(25) 

  

 

(26) 

with k = |k| and the argument (k, ω) of all variables with a bar. In order to solve eqn (25) and (26) we define the 

longitudinal and transverse projection operators PL(k) = , with the unit vector  and the dyadic product , 

and PT(k) = 1 − PL(k) along with L = PL  and T = PT . Using these projection operators, we obtain the solution  

(k,ω) = T(k,ω) + L(k,ω) = (k,ω)  = ( T(k,ω) + QL(k,ω)) , (27) 

where  

T(k,ω) = [iρω + ηk2]−1PT = T(k,ω)PT, (28) 

and  

 

(29) 

with  = η + ηk/3. The transverse part of the velocity T describes shear waves, whereas the longitudinal part 

L represents sound waves. Fourier transformation with respect to frequency yields the time-dependent tensors QT(k, t) 

= QT(k, t)PT and QL(k, t) = QL(k, t)PL,11 where  

 

(30) 

For the longitudinal part, we find  

 

(31) 

for 4c2 > k2 2, and  

 

(32) 
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for k2 2 > 4c2. Here, we defined  = /ρ, , , and 

assume t ≥ 0. We obtain the velocity field v(r, t) by Fourier transformation of eqn (27) and using the convolution 

theorem  

 

(33) 

The Green's function  

 

(34) 

is known as the dynamical Oseen tensor. In general, the matrix elements of Q(r, t) can be expressed as (r = |r|)  

 

(35) 

in real space, for both, the transversal and longitudinal part, i.e., A = AT + AL and B = BT + BL. For the transverse part, 

the closed expressions  

 

(36) 

have been derived.12 For the longitudinal part, we obtain the integral representation AL = I2 and BL = 3I2 − 2I1, with  

 

(37) 

Conclusions 

We find that the presence of the linear unsteady acceleration term in the Navier–Stokes equation leads to synchronization of 

the rotational motion. Synchronization even prevails in the presence of thermal fluctuations, as shown by our mesoscale simulations 

exploiting the MPC method. Thereby, the simulation results are well described by our mean-field analytical theory. Fluid 

compressibility affects the synchronization time over a certain range of Péclet numbers. Thereby, compressibility implies larger 

synchronization times compared to incompressible fluids. This is related to the instantaneous propagation of hydrodynamics in 

incompressible fluids.  
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