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I. INTRODUCTION
Let H be an infinite dimensional separable Complex Hilbert space. Let B(H) be the algebra of all bounded linear operators
acting on H. Let T be an operator on H. Every operator T can be decomposed into T = U|T| with a partial isometry U, where
|T| is the square root of (T*T). If U is determined uniquely by the kernel condition N(U) = N(|T|), then this decomposition is
called the polar decomposition, which is one of the most important results in operator theory.

Recall that an operator T is said to be paranormal if ||Tx||? < ||T?x|| ||x|| for every x € H [7]. An operator T is said to be n-
paranormal if || Tx ||+ < ||T{"+1}x|| [|x™|| for every x € H [17] and normaloid if v(T) = ||T||, where r(T) denotes the spectral
radius of T. An operator T is of class Q [6], if T#Z T2 — 2T*T + 1 > 0. Equivalently T € Q if ||Tx||? < % UIT?x|1% + |Ix|I?) for
every x € H. Class Q operators are introduced and studied by B. P. Duggal et al and it is well known that every class Q operator
is not necessarily normaloid and every paranormal operator is a normaloid of class Q. ie P € Q N N, where P and N denotes the
class of paranormal and normaloid operators respectively. Also he showed that the restriction of T to an invariant subspace is
again a class Q operator.

Devika, Suresh [4], introduced a new class of operators which we call the quasi class @ operators and it is defined as, for
T € B(H) IT2x]1? < %(IIT3xI|2 + ITx||?) for every x € H

In [8], A k-quasi class Q operator is defined as follows, An operator T is of k-quasi class Q if
|7t ||* < %(”T{"“}xH2 + |IT*x||?) for every x € H
and k is a natural number. D. Senthil Kumar, Prasad. T in [15], has defined the new class of operators which we call M-class Q
operators. An operator T is of M class Q if for a fixed real number M > 1, T satisfies M2TU2T2 — 2T*T + I > 0 or equivalently
ITx||? < %(M2||T2x||2 + ||x]|?) for every x € H and a fixed real number M > 1.

In [18], Youngoh Yang and Cheoul Jun Kim introduced a class Q* operators. If TU#T2 — 2TT* 41 > 0, then T is called
class Q* operators. He also proved that if T is class Q* if and only if ||T*x||? < %(lIszll2 + ||x||?) for every x € H.In[12], D.

Senthil Kumar et. al. introduced quasi class Q* operators. If TU3T3 — 2(T*T)2 + T*T > 0 $, then T is called quasi class Q*
operators. He also proved that if T is quasi class Q* if and only if | T*Tx||? < %( IT3x]|12 + ||Tx]||?) for every x € H.

In this paper, we study some properties of (n, k) quasi class Q and (n, k) quasi class Q* operators and we derive conditions
for composition and weighted composition operators to be (n, k) quasi class Q and (n, k) quasi class Q*. Aluthge transformation
of (n, k) quasi class @ and (n, k) quasi class Q* operators are derived. Conditions for Composite multiplication operators to be
(n, k) quasi class Q and (n, k) quasi class Q* are also obtained. A characterization of (n, k) quasi class Q and (n, k) quasi class
Q" composition and weighted composition operators on weighted Hardy space are obtained.

I1. (n, k) QUASI CLASS Q OPERATORS
In this section, we define new class of operators called (n, k) quasi class Q, which is a super class of n class Q and quasi n
class Q operators and studied some properties of this class of operators.
Definition 2.1.
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An operator T € B(H) is said to be (n, k) quasi class Q if for every positive integer n and for every x € H

[P0 0]* < oy AT ]| + i)

1+n
when n = 1 it is of k quasi class Q operators.

Theorem 2.2.
An operator T is of (n, k) quasi class @ if and only if
TER(TEHTO — (1 4+ )T T + nl)TF > 0 for every positive integer n.

Proof
Since T is (n, k) quasi class Q operator, we have

el < o ros el + e

~ 1+4n
o ||T{"+1""}x||2 -1+ n)||T{k+1}x||2 +nl|T*x|1?) = 0
& (Tle+iindy plktl+nixy _ (1 4 p )Ty Tk+y)y 4 n(Tkyx, Tkx) >0
o T{*k+1+n}T{k+1+n} _ (1 + n)T{*k+1}T{k+1} + nT{*k}Tk >0
e  TER(TEEmTa _ (1 4 )T T 4 )Tk > 0.

For example: let x = (xq,x,,..) €12, Define T:1?->12 by T(x)= (0,x1,%3..), T*(x) = (x3,%3,...). Then
TEB(TEHMTI — (1 + n)T™ T + nl)T* > 0. ie T is k quasi n class Q operators or (n, k) quasi class Q operators.

From the definition of quasi n class @ operator we can easily say that every quasi n class @ operator is also an operator of k
quasi n class Q. Hence we have the following implication
class Q c nclass Q C quasin class Q C k quasi n class Q.

Theorem 2.3

Every k quasi class Q operator is (n, k) quasi class Q operator.
Proof

By using induction principle and simple calculation we get the result.

Corollary 2.4
If T € B(H) is of (n, k) quasi class Q then T is of (n + 1, k) quasi class Q operator

Corollary 2.5
If T € B(H) is of (n, k) quasi class Q then aT is (n, k) quasi class Q operator for any complex number «a.

Theorem 2.6
-1
LetT € B(H). If A{T}T is an operator of (n, k) quasi class Q, then T is k quasi n paranormal operator for all 1 > 0.

Proof
1
Since A{_E}T § is an operator of (n, k) quasi class Q, then

(7)™ ((A—%T) (3737
(A_%T)*(k+1+n) (A‘%T)kﬂ-m _ (1 N n) (A‘%T)*kﬂ (,1_%7’)
1

| 2(k+1+n) 2(k+1
A2

By multiplying |A|****™ and let A = y, then
T*k+1+nTk+1+n _ (1 + n)unT*kHT(kH) + nﬂl"'"T*ka > 0.
Hence T is k quasi n paranormal operator for all 4 > 0.

— G (1) () ) (1707) 20

k+1

*(1+n) {1+n}

+n (ﬁT)*k (/r%T)k > 0.
) 1,2k
T*(k+1)Tk+1 +n |l_5

1

T*k+1+nTk+1+n _ (1 + n) |/1—§ T*ka >0

Theorem 2.7
If (n, k) quasi class Q operator T doubly commutes with an isometric operator S, then TS is an operator of (n, k) quasi class

0.

Proof
Since T is (n, k) quasi class Q operator, then
Tk (T*OHITHN — (1 + n)T*T 4+ nl) Tk > 0.
Suppose T doubly commutes with an isometric operator S, then TS = ST, S*T = TS* and S*S = [. Now let A = TS. So we
get AR (A* A+ A — (1 + n)A*A + nl)A¥ > 0. Therefore TS is a (n, k) quasi class Q operator.
Theorem 2.8
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Ifa ([, k) quasi class Q operator T € B(H) is unitarily equivalent to operator S, then S is an operator of (n, k) quasi class Q.

Proof

Assume T is unitarily equivalent to operator S Then there exists an unitary operator U such that S = U*TU and T is (1, k)
quasi class @ operator, then

S*k(§+nIgl+n — (1 4 n)S*S + nl)Sk

= (U TU)* (U TU)Y DU TV — (1 4+ n)(U*TU)*(U*TU) + nl)(U*TU)* > 0. Therefore S is (n, k) quasi class Q
operator.

Theorem 2.9
Let T € B(H) be an invertible operator and N be an operator such that N commutes with T*T. Then operator N is (n, k) quasi
class Q if and only if operator TNT ~! is of (n, k) quasi class Q.

Proof
Let N be (n, k) quasi class Q operator, then
N*(N*A+D) NP — (1 + n)N*N + nl)N* > 0.
Since operator N commutes with operator T*T, we have (TNT~1)*((TNT-H)tH(TNT 1)1+ — (1 +
n)(TNT~Y)*(TNT™Y) + nl)(TNT )%
= T(NUB( NG N — (1 4 n)N*N + nl)N*)TEL,
Since N is (n, k) quasi class Q operator, then
T(N**( NEHRNO — (1 4+ n)N*N + nl)N¥)T* > 0.

Which implies (TT*) commutes with T(N**( N*@+% N1+7 — (1 + n)N*N + nl)N¥)T*.
Also (TT*)™! is also commutes with T(N**( N*@+0) N1*% — (1 + n)N*N + nl)N¥)T*.
Then T(N**( N*+™) N1+U — (1 + n)N*N + nl)N*)T~* > 0.
Hence TNT"H is (n, k) quasi class Q operator.
Conversely suppose that (TNT1) is (n, k) quasi class Q operator, then

NGB NEF N — (1 + n)N*N + nl)N* > 0.
Corollary 2.10
Let S be (n, k) quasi class Q operator and A any positive operator such that A= = A*. Then T = A~1SA is (n, k) quasi class
Q operator.

Theorem 2.11
Let T be (n, k) quasi class Q operator. Then the tensor product T @ [ and I @ T are both (n, k) quasi class Q operators.

Proof
By the definition of (n, k) quasi class Q and tensor product and by the simple calculation we get the result.

Theorem 2.12
If T € B(H) is of (n, k) quasi class Q operator for some positive integers k and n, the range of T does not have dense range then

T, T —_—
T has the following 2X2 matrix representation T = <01 T2> on H = ran(Tk) @ ker T**, if and only if T, is n class Q
3

operator on ran(T*) and T§ = 0. Further more o(T) = o (T;) U { 0} where o (T) denotes the spectrum of T

Proof
Let P be an orthogonal projection of H onto ran(T*). Then T; = TP = PTP. By Theorem 2.2 we have that

Tk (T*@HTIH — (1 4 0)T*T + nl)T* > 0
Which implies

P(T*H T — (1 4+ n)T*T+nl)P >0
Then T/ TH" — (1 + n)T{T; +nl =0
So T; is n-class Q operator on ran(Tk).
Also for any x = (xq,x,) € H,
(T5x3, %) = (T*(I = P)x, (I — P)x)

=(I-P)x,T*U-P)x)=0
This implies ¥ = 0.
Since a(T) Ut = o(T; ) U o(T; ) where 7 is the union of certain holes in ¢ (T), which happens to be a subset of a(T;) N
a(T3) [by corollary 7, [9] ] and o(T3 ) = 0. a(T; ) N o(T3) has no interior points. So we have o(T) = o(T;) U { 0}.

T, T. — —
Suppose that T = ( ! 2) on H= ran(T*) @\ker T** where T is n class Q operator on ran(T*) and TX = 0. Then

0 T
1 i ke1-j
Tk = (le ST T, Ty ]>
0 0
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Tk 0
T = ' k—-1-j1*
CSTLT ) o
Tk (T TN — (1 4 n)T*T + nl)T*
_ (Tf"(Tl{*“"}Tl{“"} — (1 + T T, +nl)TE X)

X* Y
Where X = Ty%( T/ O™ Ti*n — (1 4+ m)T{T, + nl)(zgz_;}} T T, T )
(k=1 * -1}
v={ ) WL ) (T - Ty Ty +an () T LTI
J=0 (=0}

1 1
We know that, " If A is a matrix of the form (;1* lg) >0ifandonlyifA >0, C = 0and B = A2IW (2 $ for some

contraction W. Since T; is n-class Q operator and Y > 0, then we have T** ( T*1**T1+" — (1 + n)T*T + nI)T* > 0. Hence
T is (n, k) quasi class Q operator.

Theorem 2.13.
Let M be a closed T -invariant subspace of H. Then the restriction T|,, ofis (n, k) quasi class Q operator T to M is (n, k)
quasi class Q operator.

Proof
T, T
LetT = ( ! 2) on H =M @ M. Since T is (n, k) quasi class Q operator then by Theorem 2.12, we have T, is also is

0 T,
(n, k) quasi class Q operator.

Theorem 2.14
Let T be a regular is (n, k) quasi class Q operator, then the approximate point spectrum lies in the disc
1
(1+n)2
0ap(T) S {AE C: < Al < IT]|
IT=C*DY (T2 + n)2
Proof

Suppose T is regular (1, k) quasi class Q operator, then for every unit vector x in H, we have

2 2 —(k+1) |
etz < =GP flreens|® < El quraemirioe + i),
a+n)llx|?
||T—(k+1)"2(||T1+n||2+n) :

Now assume that A € o,,(T). Then there exists a sequence { X,}, [lx;,]| =1 such that

Hence ||T*x]||> >

1
(1+n)2

[[(T = 2)xp]l » 0 when m — 0. So we have ||Tx,, — Ax, |l = I Tx, |l — (A2l = - — |A]. Now,
||T—(k+1)||(||T1+n||2+n)§

1
when m — oo, |A] = tn)?

T
||T—(k+1) ||(||T1+n||2+n)§

I11. (n, k) QUASI CLASS Q" OPERATORS

In this section we define operators of (n, k) quasi class @ and consider some basic properties and examples.
Definition 3.1
An operator T is said to be (n, k) quasi class Q* ( quasi n-class Q*)if

1
IT*T*x||* < TTa (IT***7x 2 + nlIT*x(1%)
for every x € H and every positive integer n. Whenn = 1, it is of k quasi class Q* ( k quasi *-class Q)operator and when

k =1, it is of quasi n class Q" operator.

For example: let x = (x1,x,,...) € 12, Define T:1? - 1% by T(x) = (0,x1,%,...), T*(x) = (xz,x3,...). Then
T*R(T*INTH — (1 + n)TT* 4+ nl)T* > 0.1ie T is (n, k) quasi class Q* operator.

Using the definition of (n, k) quasi class Q* operator and by simple calculation we get the following theorem.

Theorem 3.2
For each positive integer n, T is of (1, k) quasi class Q" operator if and only if
T (T — (1 4+ n)TT* +n)T* > 0.
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From the definition of (n, k) quasi class Q* operator, we can easily say that every operator of n-class Q" * and quasi n-class Q"
is also an operator of (n, k) quasi class Q. Hence we have the following implications

class Q* € nclass Q* € quasi n-class Q* € k $ quasi n class Q*
Also every (n, k) quasi class Q* is (n + 1, k) quasi class Q* operator. Again, if T € B(H) is (n, k) quasi class Q* then aT is of
(n, k) quasi class Q* operator for any complex number a.

Theorem 3.3
1
Let T € B(H). If A72T is an operator of (n, k) quasi class Q*, then T is k quasi *- n -paranormal operator for all 1 > 0.

Theorem 3.4
If (n, k) quasi class Q" operator T doubly commutes with an isometric operator S, then T'S is an operator of (n, k) quasi class

Q"

Theorem 3.5
If (n, k) quasi class Q* operator T € B(H) is unitarily equivalent to operator S, then S is an operator of (n, k) quasi class Q.

Theorem 3.6
Let T € B(H) be an invertible operator and N be an operator such that N commutes with T*T. Then operator N is (n, k) quasi
class Q* if and only if operator TNT ™1 is (n, k) quasi class Q*.

Corollary 3.7
Let S be (n, k) quasi class Q* operator and A any positive operator such that A™ = A*. Then T = A~1SA is (n, k) quasi class
Q* operator.

Thereom 3.8
Let T be (n, k) quasi class Q* operator. Then the tensor product T @ I and I @ T are both (n, k) quasi class Q* operators.

Theorem 3.9
If T € B(H) is of (n, k) quasi class Q" operator for any positive integer n, a non zero complex number A € ,,(T) and T is of

the form T = </1 T2> onH =ker(T — 1) @ ran(T — 1)*, then

0 T,
1.T, = 0 and
2. T3 is (n, k) quasi class Q *operator.
Proof
T. ’
Let T = (g T2> on H= ker(T — 1) @ ran(T — 1)* Without the loss of generality assume that A = 1, then by Theorem
3

3.2, T*(T* T — (1 + n)TT* + nI)T* > 0. Then,
k—1 k—1-j
Tk — (1 Zj:o T2 T3 ) and
0 TX
. ( 1 0 )
T = _ k—1—j\* .
(ST 1) Tk
So, T** (T*¥"T™" — (1 + n)TT* + nI)T* > 0 gives

A B
(B* c) 20
Where
A=1-11+n)(1 + T,T;) +n,
B= (LT T, — (1 + n)T,T35)TF — (1 +n)(TLT5) (TN T TS7') and
" - k—1-j - k—-1-j\* —j *
C=B(TGT T, D+TOTnTy ) Qhe: Ty ' — A +n)T,T5)
+ Tk ((Zj":OTZ T;“")*(zj":oT2 T;_j)> + TIR(TEVTI4 — (1 4+ n)TsTS + n)TE

Therefore 1 +n — (1 +n)(1 + T,T;) + n = 0, which implies that (1 + n)(=T,T,) = 0. This gives T, = 0, since n is a
positive integer. Hence T; is k quasi n-class Q* operator.

Corollary 3.10
A0
If T € B(H) is of (n, k) quasi class Q* operator for a positive integer n, then T is of the form T = ( ) on H =

0 T,
ker (T — 1) @ {ran(T — 1)}*, where T; is (n, k) quasi class Q* operator and ker (T — A1) = {0}.

Theorem 3.11
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If T € B(H) is (n, k) quasi class Q" operator for a positive integer n, T does not have dense range and T has the following 2X2

T, T. —
matrix representation T = (0 T2> on H = ran(T¥) @ ker T** if and only if T;1¥"T1*" —
3

(1 4+ n)(Ty Ty + T,T;) + nl = 0 $ and T¥ = 0. Further more o(T) = a(T;) U{0}.

Proof
Let T € B(H) be k quasi n class Q* operator and P be an orthogonal
projection onto ran(T*). Then T; = TP = PTP. By Theorem 3.2 we have that
T (T T — (1 4+ )TT* +n)T* > 0
P(T*H T — (1 4+ 0)TT* +nl)P =0
THTH — (1 + ) (Th T + ToT3) +nl =0
Also for any x = (xq; x,) € H,
(T5x3, %) = (T*(I = P)x, (I — P)x)
=(I-P)x,T*U-P)x)=0
This implies 5 = 0.
Since a(T) Ut = o(T; ) U o(T; ) where 7 is the union of certain holes in ¢ (T), which happens to be a subset of a(T;) N
o(T;) [by corollary 7,[9]]. 0(T53 ) = 0 and o(T; ) N o(T5) has no interior points we have o(T) = o(T;) U {0}.
Suppose that T = (7(; ;3) on H= ran(Tk) @ ker T**, T;*"T*" — (1 + n)

(T, Ty + T,T;) + nl = 0 and T¥ = 0. Then we have
T (T*HTHR — (1 4+ n)TT* + nl)T*

( iy : )
(Zk_lTJTZ T;(_l_j)* T;k
TyHTH — (14 (T Ty + T +n T (LT, T, ) — (1 + n)T,T5

(Z oT T, T, ]) TH™ — (1 4+ n)TsTy (Zlﬂ:OTiTZ T;_]) (Z}LOTiTZ T;_])
= —(1+WTT; +n
(le YEATIT, Ty ™ ’)
0 Tk

_ (A B
= (B* C) > 0.
Where

A =TT T — (1 + n) (T4 Ty + T,T5) + n)TE,

B = Ty¥(Ty T — (14 n) (T4 Ty + ToT5) + nD) (X2 1T, T and

¢ = (BT T, T T) (@i — (1 4+ (LT + T,T5) + D (B T, T )
Hence T is k quasi n-class Q* operator.

Theorem 3.12

Let M be a closed T -invariant subspace of H. Then the restriction T'|,, ofis (n, k) quasi class Q* operator T to M is (n, k)
quasi class Q* operator.

Proof
By Theorem 3.11, T|,, is also k quasi n class Q* operator.

Theorem 3.13
Let T be a regular is (n, k) quasi class Q" operator, then the approximate point spectrum lies in the disc 0,,(T) S {1 €

1
(14n)2

C: T < A < |IT|
=GO T =2+ nzn)2
Proof
Suppose T is regular k quasi n class Q* operator, then for every unit vector x in H, we have
(1 + n)llx|I?
TANTENENTIAI TN + n)
Now assume that A € Oap (T). Then there exists a sequence {x,,}||x;,|| = 1 such that

[|(T — D)xp|l » 0 when m — oo we have

IT*x]1? =

ITxp — Ak |l = T2 I = [A]l]26, |l
= |ITIl — 1Al
1
1+n)2
> ( ) 1
NT*=HIT =< (772 +n)2
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1
(14n)2

Now when m — oo, |A]| = T
=2~k +n)2 +m)2

IV. (n, k) QUASI CLASS Q AND (1, k) QUASI CLASS Q* COMPOSITION OPERATORS

Let L?(1) = L?(X,Z, 1), where (X,Z,1) be a sigma-finite measure space. A bounded linear operator Czf = fo T on

L*(X, %, 1) is said to be a composition operator induced by T, a non-singular measurable transformation from X into itself, when

. . . . .oodarT? .
the measure 2 T~1 is absolutely continuous with respect to the measure A and the Radon-Nikodym derivative = fois

essentially bounded. The Radon-Nikodym derivative of the measure A(T*)~* with respect to A is denoted by fo(k), where T* is
obtained by composing T- k times. Every essentially bounded complex-valued measurable function f; induces the bounded
operator Mg on L?(1), which is defined by M, f = fof for every f € L*(A). Further C7Cr = Mg, C7°CF = M, @ and

*1+n ~1+n _
CHH MOt = Mpaan.

The following lemma due to Harrington and Whitley [9] is well known.

Lemma 4.1
Let P denote the projection of L? on m
(1) C:Crf = fof and CrCif = (fy o T)Pf forall f € L?, where P is the projection of L? onto R(C).
(2) R(C) ={f € L*:f is T™'X measurable }.
In this section k quasi n-class Q and k quasi n-class Q* composition operator on L? space are characterized as follows.

Theorem 4.2.
Let C; € B(L*(1)). Then Cy is of k quasi n-class Q if and only iffo(k+1+n) -1+ n)fo(kﬂ) + nfo(k) >0a.e.

Proof
Let C; € B(L*(1)) is of k quasi n-class Q if and only if
C;k+1+nC7,f+1+n _ (1 + n)C;kHC#’” + TLC;RC{S >0
By Theorem 2.2
Thus ((CFFHIFCEIA — (1 + n)CRTICETY + nCi¥CF)xg, x5) = 0 for every characteristic function yz of E in  such that

A(E) < 0. Since C7Cp = Mg, and C;k+1+nC7@+1+n = M _(k+1+n) then ((Mf(k+1+n) -1+ TL)Mf(k+1) + Tle(k,)))(E,XE) > 0.
0 0 0

=M,
Hence fE(fO(k+1+") -1+ n)fo(kH) 1 nfo(k)) dA = 0 for every E in X.

Hence Cy is of k quasi n-class Q if and only if fo(k+1+n) -1+ n)fo(k+1) + nfo(k) >0ae.

Example 4.3

Let X = N, the set of all natural numbers and A be the counting measure on it. Define T:N - Nby T(1) = 1,T(4p+q—2) =

p+1forq=0,1,23and p € N. We have 2= fip)=-=fp)=1forp =1 fo(p) =4, f¢(p) =16,.. =

FEF () = 4k+14n for p € N — {1}, Since £ () = (1 + )£,V () + nf,™ (p) = 0 for every p. Hence Hence C;
is of k quasi n-class Q operator.

Theorem 4.4 [17]
If C; € B(L?*(A)) has dense range then f = gy © T a.e.

Corollary 4.5
If Cy is of k quasi n-class Q with dense range on L?(1) then (go o T)**1+™ — (1 4+ n)(gy o T)**Y + n(ge o T)* = 0 ace.

Proof
By Theorem 4.2 and Theorem 4.4, we obtain the result.

Theorem 4.6

Let Cr € B(L?(1)). Then C; is of k quasi n-class Q operator if and only if (fFt1*" oTk+t1+myp, ... —
A+n)(fF o THDYPy +n(ff o TF)P, >0 ae, where P, P, Pri14n are the projections ofL?>  onto
R(C),R(C?), ..., R(C*+1*1) respectively.

Proof
Suppose Cr € B(L%(1)) and C; is of k quasi n-class Q operator if and only if
C#+1+nc;k+1+n _ (1 + n)C{f“C}kH + TLCTkC;k >0
By Theorem 2.2. Then
((Ckramesktlsn _ (1 + n)CEPICHR*Y + nCECHF)f, f) = 0 for every f € L?(Q).
Since (CrCif, f) = ((fo © TIPLf, f YBy [10]. Hence ((ff ™ o TR¥M)P L £ F) — (14 (il o TPy fL ) +
n{(f o T¥)Pf, f) = 0 for every f € L2(1).
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Hence

((Cgerm o TR Py = (L )R o TR )Py + n(fE 0 TP £, ) 2 0,
= (fotH* ™ o TP 1o — (LA W) (ff o TPy + n(fy 0 T)P, = Oace.

Corollary 4.7
Let C; € B(L?>(1)) with dense range. Then Cj is of k quasi n-class Q operator if and only if (ffft1*" o Tk+14n) —
A+n)(fEFL o THY) + n(ffoTH) = 0 ae.

Theorem 4.8
Let C; € B(L?(1)). Then Cy is of k quasi n-class Q* if and only iffo(k+1+n) -1+ n)fo(k)E(fO) oT7k + nfo(k) >0ae.
Proof

Let C; € B(L?*(1)) is of k quasi n-class Q* if and only if
CpRr1Anck+isn _ (1 4 n)Ci*(CrCr)CK + nCikCE > 0
Thus ((C;FHICEHI — (1 4+ n)CrR(CrCH)CE + nC¥CE) xg, xg) = 0 for every characteristic function yy of E in X such that
A(E) < 0. Since C;Cr = My and CF*PHHCEY 4™ = M _er14m) then fE(fO("*“”) — A+ n)fPEF) e T +nf*)dr=0
0

for every E in X.
Hence Cy is of k quasi n-class Q* if and only if £*™"*™ — (1 + n)fPE(f) o T* + nf® = 0 ace.

Example 4.9

Let X = N, the set of all natural numbers and A be the counting measure on it. Define T:N - Nby T(1) =T(2)=T(@3) =1,
T(4p+q)=p+1 for ¢ =0,1,2,3 and p € N. Since £, — (1 + ), PE(fy) o T™* + nf,*) = 0 for every p. Hence
Hence Cy is of k quasi n-class Q" operator.

Corollary 4.10
If Cr is k quasi n-class Q* with dense range on L?(4) if and only if fF* ™™ — (1 + n)ff™ + nff = 0 ae.

Theorem 4.11
Let Cr € B(L?(1)). Then C; is of k quasi n-class Q operator if and only if (fft**™ oTk+*M)p, .. —
1+ n)(fF L o TPy + n(ff o TF)P, = 0 a.e, where P;’s are the projections of L? onto R(C?) respectively.

Proof
Let C; € B(L?(1)) is of k quasi n-class Q operator if and only if
Critneoxk+itn _ (1 4 n)CK(CrCr)CHF + nCECY* =2 0
Thus
((Crritncxk+ldn _ (1 4+ n)CK(CrCr)CHF + nCECTF)f, f) = 0 for every characteristic function yg of E in X such that

AME) < oo. Since C;Cr = My, Ci**™™Cp" = M am and CrCr = (foe T)P then [ ((fo’”“" o THHI+MYp, 0 —

A+ n)fE(fy o TN +n(ff o Tk)Pk) dA = 0 forevery E in X.
Hence Cy is of k quasi n-class Q* if and only if (ff**" o TP v — (L +0)fE(fo o T D) + n(ff o TF)P, = 0 ace.

Corollary 4.12
Let Cr € B(L?(1)) with dense range. Then Cj is of k quasi n-class Q* if and only if (ffft1*" oTk+14n) —
A+n)fEfy o T YD) +n(ffoT*) = 0ace.
V. k QUASI n-CLASS Q AND k QUASI n-CLASS Q* WEIGHTED COMPOSITION OPERATORS
A weighted composition operator is a linear transformation acting on the set of complex valued £ measurable functions f of
the form Wrf = w(f oT), where w is a complex valued measurable function. In the case that w = 1 a.e., we say that Wr is a
composition operator. Let wy, denote w(wy) (W2), ..., (WE™1) so that W[ f = wy (f o T)¥ [12].
To examine the weighted composition operators efficiently, Alan Lambert [11], associated conditional expectation operator
E with each transformation T as E(¢|T1X) = E(e).
E(f) is defined for each non-negative measurable function f € LP(1 < p) and is uniquely determined by the conditions
(i) E(f) is T~1X measurable and
(ii) If B is any TZ measurable set for which fB f d; converges, then we have fo d, = fB E(f)d,.
As an operator on LP, E is the projection onto the closure range of C. E, the identity on L? if and only if T"10 = o. Now we are
ready to derive the characterization of k quasi n-class Q and of k quasi n-class Q* weighted composition operator as follows.

Theorem 5.1
Let Wy be a weighted composition operator on B(L?(1)). Then Wy is of k quasi n-class Q if and only if

(fEHMEWE,14n) o T-®RF4M) — (1 + ) (fIVEWE,,) o T-04D) 4 n(fEEWE) o T7) > 0 e,
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Proof
Let Wy € B(L?(1)) is of k quasi n-class Q if and only if

W;k+1+nW711c+1+n _ (1 + n)W;k_HWr;H—l + nW;f"WTk >0
By Theorem 2.2
Thus (W k+i+n — (1 4+ )Wk IWE + nWi W) xg, xg) = 0 for every characteristic function yg of E in I such
that A(E) < 0. Since WiWy = fLEW?2) o T™1 , WEF = wi(f o T)X, Wik f = fFE(Wy f) o T™% and Wi*Wkf = fFE(W?E) o
T=*f . Then (" EWEy14n) o T-EH4W — (1 + ) (M VEWE, 1) 0 T-0HD) 4 n(fEEWE) 0 T™)) 2, xg) 2 0.

Which implies [ (&1 E W2, 14,) o T-®¥14W) — (1 + ) (f P EWE,1) o T-® D) 4 n(fFEWE) o T™¥)dA > 0 for
every E in X.
Hence Wy is of k quasi n-class Q if and only if (fF* ™" EWZ,14n) o T-® *14m) — (1 4+ n) (FEVEWE,,) o T-*D) 4
n(fFEW2) o T™%) > 0 ace.

Corollary 5.2
Let Wy be a weighted composition operator on B(L?(1)) and assume that T~1X = X . Then Wy is of k quasi n-class Q if and

only if (ffF M (W2, 14p) o T-RHIH) — (1 + n)(fo(kﬂ)(w,fﬂ) o T~*+D) 4 n(ffF(w2) o T™%) > 0 ace.

Theorem 5.3
Let Wy be a weighted composition operator on B(L?(1)). Then Wy is of k quasi n-class Q if and only if

- K - -
Wi (fo o TTEHAD)E (W) — (1 + n)Wk+1(fo( ot CHDYVEWiesr) + nwy (f 0 TTVE(w) 2 0 ace.

Proof
Let Wi € B(L?(1)) is of k quasi n-class Q if and only if

W71g+1+nW’Ifk+1+n _ (1 + n)WTIg+1WT*k+1 + TlWy’w(WT*k >0
By Theorem 2.2
Thus ((WEHITFRWRHIR — (1 4+ n)WEPITWHRHE + nWEWF ) xg, x5) = 0 for every characteristic function yg of E in X such
that A(E) < 0. Since Wy Wj = w(fy o T)EW f), WEf = wi(f e T)¥, Wik f = fFE(wy f) o T™F and WKW f = wy (fo* o
T ¥)E (wif). Then ((Wk+1+n(fok+1+n ° T_(k+1+n))E(Wk+1+n) -1+ n)Wk+1(fo(k+1) ° T_(k+1))E(Wk+1) + an(fok °

T™EW)) Xe X5) = 0.
Which  implies fE Wk+1+n(fok+1+n ° T_(k+1+n))E(Wk+1+n) -1+ n)Wk+1(fo(k+1) ° T_(k+1))E(Wk+1) +nw(fg o
T~®)E(w,)dA = 0 for every E in X.
Hence Wy is of k quasi n-class Q if and only if Wy, qin(ff™ o T=*F OV E(w, ) — (1 + n)wk+1(ﬁ)(k+1) °
T~C+DVE (Wyepq) + nwi (ff o T™M)E(wy) = 0 ace.

Corollary 5.4
Let Wy be a weighted composition operator on B(L2(1)) and T~'Z = Z. Then Wy is of k quasi n-class Q if and only if

- k - —
W§+1+n(f0k+1+n oT (k+1+n)) —(1+ n)wk2+1(]‘0( Dor (k+1)) + w2 (fkoT%) > 0 ace.

Theorem 5.5
Let Wy be a weighted composition operator on B(L*(A)). Then Wy is of k quasi n-class Q* if and only if

(f0k+1+nE(W13+1+n) ° T_(k+1+n)) —(1+n) (fo(k)E(W13+1)E(f0) ° T_k) +n(ffEW) o T™) 2 0 ae.

Proof
Let Wy € B(L?(1)) is of k quasi n-class Q if and only if
Wyktitnyk+isn _ (1 4 n)WrkWo WEWE + nWikwk > 0

By Theorem 2.2
Thus ((WpktInwk+i+n — (1 + n)WrkWeWiWE + nWikW) xg, xg) = 0 for every characteristic function yg of E in X such
that A(E) < oo. Since WiWrp = fLEW?) o T1f, WEf =w (fo Tk, Wikf = fEE(w,f)oT™% and WrkWjf =

o EWg) e T f. Then (A EWE 1 4n) o T — (14 ) (fOEWEDE(fo) o T7%) + n(fEEWE) o
T_k))XEﬁXE) = 0.

Which implies [, (fE M EW2 14n) © T-® 1) — (1 + ) (f  VEWE)E(fo) o T) + n(fEFEWE) o T¥)dA 2 0

for every E in X.
Hence Wy is of k quasi n-class Q" if and only if (fF* " E(WZ,1,,) o T ®* 1) — (1 + n)(FEVEWZ,)E(fy) e T7F) +
n(fFEW2) o T™%) > 0 ace.

Corollary 5.6
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Let Wy be a weighted composition operator on B(L*(1)) and assume that T~1X = X . Then Wy is of k quasi n-class Q* if and
only if (ffH 1M (Wl 14p) o T-+4M) — (1 + ) (D (WEyy) o T) + n(ffWE) o T™F) 2 0 ace.

Theorem 5.7
Let Wy be a weighted composition operator on B(L?(1)). Then W7 is of k quasi n-class Q* if and only if
Wk+1+n(fok+1+n ° Tk+1+n)E(Wk+1+n) -1+ n)WkE(Wk+2)(fOE(f0k) o T%) + an(fok ° Tk)E(Wk) = 0ae.

Corollary 5.8
Let Wy be a weighted composition operator on B(L*(1)) and T~1X = X. Then Wy is of k quasi n-class Q* if and only if
WE 1o FF I o TR — (1 4 n)Wwy ', (fE T o TF) + nw2(ff o T*) > 0 ae.

- - 1 1
The Aluthge transform of T is the operator T given by T = |T|2U|T |2z was introduced in [1] by Aluthge is the. The idea behind
the Aluthge transform is to convert an operator into another operator which shares with the first one some spectral properties
but it is closed to being a normal operator. More generally we may have family of operators T, : 0 < r < 1 where T, =

|T|"U|T|*"[2. For a composition operator C, the polar decomposition is given by C = U|C| where |C|f = +/fof and Uf =
1
ot 0 T

In [11] Lambert has given general Aluthge transformation for composition operator as C, = |C|"U|C|*™" and C,f =

(ffoT)z f o T. That is C, is the weighted composition operators with weights © = (ffOT
0° 0°

weighted composition operator it is easy to show that |C.|f =+/fo. (E(@)?T~1)f and |C; |f = vE[v.f] wherem =
Ty foo T

. Also we have
[EaFor T2]*

CEf = m(foT")

CH* = feE(my.f)oT™*
CFCEf = fEE(mR) o T f

)E where 0 <r < 1. Since C, is

Theorem 5.9
Let C, € B(L?(1)). Then C, is of k quasi n-class Q if and only if (ff***"E (w2, 1,,) o T-*+14™) — (1 4 n) (fo(kH)E(n,%H) °
T=C+D) + n(f¥E(@2) o T™%) > 0 ace.

Proof

r

Since C, is a weighted composition operator with weight = (ff—OT)E , it follows from Theorem 5.1, that C, is of k quasi n-class
»

Q if and only if (ff* " E(m2,1,,) o T~® *14m) — (1 + n)(fEPE(Z, ) o T-0D) 4 n(fFE@E) o T™%) = 0 ace.

Corollary 5.10
If T'£=% and C, € B(L?()). Then C, is of k quasi n-class Q if and only if (ff*'*"m2, ,, o T-k+1+m))
1+ n)(]‘o(k+1)7'r,%Jr1 o T~®+D) 4 n(ffmZ o T7¥) > 0 ace.

Theorem 5.11
Let C, € B(L*(1)). Then C; is of k quasi n-class Q if and only if mp qn(ff™ ™o T-*HVE(m,, 100 —

(1 4 Wy (I 0 T DVE (1,1) + nmy (fF o T™M)E(m,) = 0 ace.

Proof

,
Since C; is a weighted composition operator with weight = (ff—oT)Z , it follows from Theorem 5.3, that C; is of k quasi n-class
»

Q ifand only if7Tk+1+n(f0k+1+n ° T_(k+1+n))E(”k+1+n) -1+ n)”k+1(fo(k+1) ° T_(k+1))E(”k+1) + n”k(fok ° T_k)E(”k) =
0ae.

Corollary 5.12
Let C, € B(L?(1)) and T~ =3. Then C; is of k quasi n-class Q if and only if 72, ., (fet1*" o T-(k+14m))
1+ n)nﬁﬂ(fo(kH) o T~®+D) 4 nr2(fk o T7%) 2 0 ace.

Theorem 5.13
Let C, € B(L?(1)). Then C, is of k quasi n-class Q* if and only if (ff*'*"E(mZ, ) o T-*KHHM) — (14
) (M VE 2, )E(fy) o T™® D) 4+ n(fEE(@E) o T7¥) 2 0 ace.

Proof
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r

Since C, is a weighted composition operator with weight = (ff—OT)E , it follows from Theorem 7.2, that C, is of k quasi n-class
o

Q* ifand only if (fF* " M E (2, 140) o T~ ® 1) — (1 + n) (L VE (M2, )E(fy) o T-®D) 4 n(fEE(@Z) o T™¥) 2 0 ace.

Corollary 5.14
If T7'2 =% and C,. € B(L*(1)). Then C, is of k quasi n-class Q* if and only if (ff*'*"m2, ,, o T-k+1+m)) —
1 +n)(f, (k+1)nk+ o T~*+D) 4 n(ffmZ o T7%) 2 0 ace.

Theorem 5.15
Let C, € B(L*(A)). Then C; is of k quasi n-class Q* if and only if 7y (fEHH ™o T YE(,, 1) —

(1 4 W E @) (FEVE () 0 TED) 4y (ff 0 TF)E () = 0 ace.

Corollary 5.16
If T7'£ =% and C} € B(L*(A)). Then C; is of k quasi n-class Q* if and only if w7, ,,(fdttm o Tk+14m))

(1 + nni,(f, 0(k+1) o T+ 4 nuZ(ff o TF) 2 0 ace.

B. P Duggal [5] described the second Aluthge Transformation of T by T = |T|2V|T|z, where T = V|T| is the polar
1

- ~ 1 1
decomposition of T. Now we consider C = |C,|2V|C,|2, where C, =V |C,| is the polar decomposition of the generalized
Aluthge transformation is C,: 0 < r < 1. We have |C,|f = \/Jf, where ] = fo.E(m?) o T71.

1 1 1 1 1 1 1 B
= |C|2V]|C, |z = ﬁEV\/]ﬁf:\/]din(Lj;uﬂf)OT:]Zn(L?IOT) (foT). We see then that C is a weighted
Jj&

. . . ' 2 (xsups
composition operator with weightw’ = Jam (=0T |.
J&

Theorem 5.17
If C is of k quasi n-class Q if and only if (ff*'*"EW'2, ,,) o T-*F1HM) — (1 +n)(f0(k+1)E(w’,2{+1) o T-(k+D) ¢
n(fFEW'2) o T7%) = 0 ace.

Proof

Xsulpl °

T), then by Theorem 5.1 we obtain the result.
J4

~ 1
Since C is a weighted composition operator with weight w' = Jam (

Corollary 5.18
IfT~'2 =% and € € B(L2(A)) is of k quasi n-class Q if and only if (fF*1 w2, ., o T=*+1+M) — (1 + n)(f, D2 o
T=C+D) + n(few'2 o T7¥) 2 0 ace.

Theorem 5.19
Let C € B(L*(1)). Then C* is of k quasi n-class Q if and only if W'y,qsn(fETTMEW'2, 4p) o TR —

A+ ) Wi (FFVE(W'E,,) o T-6D) 4w/ (FKEW'2) o T7) = 0 ace.

Proof
L“lpf o

T), then by Theorem 5.3 we obtain the result.
Jj&

~ 1
Since C* is a weighted composition operator with weight w' = Jax (

Corollary 5.20
Let C € B(L?(1)) and T~ =3. Then C* is of k quasi n-class Q if and only if w'Z ., (fett*" o T-(k+14n))

A+ ) w i (fEY o T-CD) f W' 2(fEoT¥) 2 0 ace.

Theorem 5.21
If C is of k quasi n-class Q" if and only if (fft * ME(W'2, ,,,) o T-*+14M) — (1 + n)(f, CDE W2, )E(f,) T-k+D)
n(fFEW'2) o T7%) = 0 ace.

Corollary 5.22
IfT7'Z =Zand C E B(LZ(/l)) is of k quasi n-class Q* if and only if (fg* W'z, ., o T-*K+14™) — (1 4+ n)(f, D2 o
T=C+D) + n(few'2 o T7¥) 2 0 ae.

Theorem 5.23
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Let C € B(L*(1)). Then C* is of k quasi n-class Q* if and only if W ;i n(ff™ o TEI)EW (i) —
! ! k !
(1 4+ W e EW s ) (FEVE(f) o TED) 4 nw’ (FE e THE(W',) = 0 ace.

Corollary 5.24
Let C € B(L*(1)) and T~'£ =Z. Then C* is of k quasi n-class Q* if and only if w2, ,(fg™1*" o T*+1M) —

A+ w2, (f, (k+1) o TUHD) + nw'2(fk o T*) > 0 ace.
VI. k QUASI n-CLASS Q OF k QUASI n-CLASS Q* WEIGHTED COMPOSITION OPERATORS ON WEIGHTED HARDY SPACE.

The set H*(B) of formal complex power series f(z) = Ym0 @mz™ such that [|f[I% = Xi_olam|*B5 < oo is a Hilbert
space of functions analytic in the unit disc with the inner product.
(f,9) = Zm=o @by B2, for an analytic map f on the open unit disc D and g(z) = Yo_o bpz™
Let¢: D — D be an analytic self map of the unit disc and consider the corresponding composition operator Cy acting on H 2p.
That is Cy(f) = feo¢p for f €H 2(B). The operators Cy are not necessarily defined on all of H 2(B). They are everywhere

defined in some special cases on the classical Hardy Space H? (the case when 8, = 1 for all n) and on a general space H?(f)
if the function ¢ is analytic on some open set containing the closed unit disc having supremum norm strictly smaller than one.
The weighted composition operator Wy, is defined as (W¢ f ) (Z) =nf(¢$(2)) and (Wgf)(2) = Tf (¢(2)) forevery z € D.

Let w be a point on the open disc. Define kf, (2) =Ym= 0 . Then the function kﬁ is a point evaluation for H2(f).Then kﬂ

ﬁZ

2 2m
is in H2(B) and ||kf,|| = 2%:0% . Thus ||k, || is an increasing function of|w|. If f(2) = Yo @mz™ then (f, kf,) = f(w)

for all f and k,f,. Hence we can easily seen that C(;kﬁ = kg(w), Wg Df, = r_[kf, and kg = 1 (the function identically equal to 1).
Now we characterize k quasi n-class Q and k quasi n-class Q* composition operators on this space as follows.

Theorem 6.1
If C, is of k quasi n-class Q operator in H?(B), then Cy*"*"CE* ™™ — (1 + n)C3** ' C5* + nCi*Cl = 0.

Proof
For f € H(pB), consider
<(C$k+1+ncglg+1+n (1 + n)C*k+1Ck+1 + Tlc*k(:£)f f)
— ((C*k+1+nck+1+n)f f) n (1 + n)((C*k+1C£+1)f,f) + n((CJ,kCg)f,f)
<C*k+1+nf’ Ck+1+nf) (1 + n)(C(;k“f, C£+1f) + n<CJ,kf. Cgf)

= ||Cé§“+"f||2 -+ mllcg 1 + nlicgr

Let f = kg then
<(C$k+1+ncglg+1+n _ (1 + n)c;;k+1c$+1 + ncékcg)f’f)

2 2 2
= lleg g - - mlleg ) + nllcgid)
= [lkgII” = @+ wllkg |+ nllig |
=0

If Cy is of k quasi n-class Q operator.

Theorem 6.2
If C,, is of k quasi n-class Q operator in H?(B), then 5™+ C 5" ™" — (1 + n)CSH CH* + nC5C* = 0.

Proof
For f € H(B), consider
<(C£+1+ncq*>k+1+n (1 +n)Ck+1C$k+1 +TlC£C*k)f f)

— | *k+1+7’lf|| _ (1 +n)| C(;k+1f||

Letf = kg and ¢(0) = 0 then we have
<(C£+1+ncq*>k+1+n (1 +n)Ck+1C*k+1 +TlC£C*k)f f)
= c *k+1+nkﬁ” 1+ n)| C*k+1k3”2 +1
2
=11 = @+ ] + ]|
=0
Hence Cy is of k quasi n-class Q operator.

2
Coko |

Theorem 6.3
2
If Cy is of k quasi n-class Q" operator in H2(B) if and only ||kg||2 > ”kg(o) ” .
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Theorem 6.4

2 2
If Cy is of k quasi n-class Q™ operator in H2(B) if and only ||kf;k+1+n(0) ” = ||k§k(0) ” .

Next we characterize the k quasi n-class Q and k quasi n-class Q* weighted composition operator on weighted hardy space as
follows

Theorem 6.5
An operator Wy, € H*(B) is k quasi n-class Q if and only if [|7****"||> — (1 + n)||z**||* + n|lz*||* = 0.

Proof
Since Wy, is k quasi n-class Q operator, then for any f € H 2(B), we have

<(W(;k+1+7’lw£f+1+n _ (1 + n)w£k+1wqé(+1 + nW$quI;)f,f) >0

o Wy f)* = @+ w1+ nllwg = 0
o Wi i) = @+ mlwgkE ] + Wkl = 0 when £ = K
o 7 kB | = (1 + )|k |+ |kl = 0

2 2 2
& a2k || = @+ )l 212 |[k5 || + nllz®12||k5 " = 0
& [|rk |12 — (1 + n)||7*+ % + nllz*)? = 0.

Theorem 6.6
An operator Wy € H*(B) is k quasi n-class Q if and only if [|Z****"||> — (1 + n)||Z**||* + nllT*|I* = 0.

Proof
Since Wy, is k quasi n-class Q operator, we have
(WHrmwgkrn — (1 + )W W + nWEWSF)f, £) = 0 forany f € H2(B)
<(qu;+1+nw(;k+1+n _ (1 + n)w$+1w$k+1 + nW£W$k)f:f) >0
o [wge | — L+ Wk |+ mllwgke ]| = 0
& |7k - @+ @ kE | + nf| 7 kE||” = 0 for £ = kP and ¢(0) = 0
o IRz — (4| 7| + a2 = 0.

Hence the theorem.

Theorem 6.7
An operator Wy, is of k quasi n-class Q* operator in H2(B) if and only if ||****™||2 — (1 +n) |z|?||z*~||* + n|lz*||* = 0.

Theorem 6.8
An operator Wy € H*(B) is of k quasi n-class Q* if and only if [|Z****"||* — (1 + n)|z|?||IZ*~||* + n||7T*||* = 0.
VII. (n, k) QUASI CLASS Q AND (n, k) QUASI CLASS Q* OPERATORS

As composite multiplication operator to a linear transformation acting on a set of complex value £ measurable functions f of
the form M, +(f) = CtM,f =uoTf oT where u is a complex valued X measurable function. In the case u = la.e, My 1
becomes a composition operator denoted by Cr.

Proposition 7.1

Let the composite multiplication operator M, 7(f) € B(L?(2)) then foru > 0
(1) My Myr f = ufof

() MysMyq f = W? o T)(fy o T).E(f).

Since My 7 (f) = CoMyf = wo Tf o T, MI1(f) = (CoM )™M = u™(f o T)%, My r(f) = ufy. E(f) o T~ and MJ%(f) =
ufo- EQufy) o T~ D E(f) o T™" where E(ufy) o T~V = E(ufy) o T7%, E(ufy) o T72, ..., E(ufo) o T~ E(ufy) o
T" 1t = E(ufy) o TY, E(ufy) o T?, ..., E(ufy) o T 1.

In this section, we study k quasi n-class Q and k quasi n-class Q* composite
multiplication operator as follows.

Theorem 7.2

Let the composite multiplication operator M, 1-(f) € B(L?(1)). Then M, r is k quasi n-class Q if and only if ufy. E(uf,) o
T~K*E (Upeyq1n) o T™EF — (1 4+ n)ufy. E(ufy) o T™FE (ugesq) o T~*D + nufy E(ufy) o T-*VE(w) o T = 0.
a.e.
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Proof
Suppose M,, r is k quasi n-class Q operator, then

MM — (1 4 )M MERY + nMEME . > 0. Then for any f € L?(1), we have

(MM — (1 + )MET M + nMSMEL)f, f) 2 0
(MF M MET L f) — (U4 )M MET f, f) + ndMG S ML f, f) 2 0
Since MyEMf 1 = ufo. E(ufy) o T"® D E(f) o T, ME MK = wpu o T*. fy o TK.E(ufy) o T* L. E(f). where u, = u o
T.uoT? . .uoTk
& ufo. E(ufy) o T~ *WE (i1 ) o T™HHH — (1 4+ n)ufy. E(ufy) o T*
E(ugsr) o T 4+ nufy E(ufy) o T-® " VE) o T™* >0

Corollary 7.3
If the composition operator C; € B(L?(2)) then Cy is k quasi n-class Q if and only if fy. E(fy) o T=**™ — (1 + n)fo. E(fy) ©
T* +nfy. E(f)) o T-®*"V > 0. ace.

Proof
By putting u = 1 in Theorem 7.2, we get the result.

Theorem 7.4

Let the composite multiplication operator M, r(f) € B(L2 (/1)). Then M;; is k quasi n-class Q if and only if
Upgrentt © TRHIf o TRALR E(ufy) o TEM — (1 4+ n)ugyg (w o TR (fy o TH).E(ufy) o T® + n(upu o T¥)(f o
TK).E(fy) o T¥1 > 0. ae.

Corollary 7.5
If the composition operator Cr € B(L?(1)) then C7 is k quasi n-class Q if and only if fy o T**1*™ E(fy) o T**™ — (1 + n)fy o
THLE(fy) o TK + nfy o T E(fy) o TF"1 > 0. ace.

Theorem 7.6

Let the composite multiplication operator My, 7-(f) € B(L?(1)). Then M,  is k quasi n-class Q* if and only if ufy. E(uf,) o
T~CAE (wyepq4) o T™E — (1 + m)ufy. E(ufy) o T-%DE (wyyz) o T + nufy. E(ufy) o T-*VE ) o T™* > 0.
a.e.

Corollary 7.7
If the composition operator C; € B(L?(1)) then Cy is k quasi n-class Q* if and only if fo. E(fy) o T~%*™ — (1 + n) fLE(f,) ©
T~® D E(f) oT™* +nfy. E(fy) o T"* D > 0. ae.

Theorem 7.8
Let the composite multiplication operator M, 7(f) € B(L2(1)). Then M;, 1 is k quasi n-class Q" if and only if w411 ufy ©
T4 E(ufy) o T~ — (1 + n)wufy. E@3fE) o T + n(ugufy o T¥). E(ufy) o T-% D > 0. ae.

Corollary 7.9

If the composition operator C; € B(L?(1)) then C; is k quasi n-class Q* if and only if f o TK+1+™ E(f,) o T+ — (1 +
N fo. E(fE) o T + nfy o TF.E(fy) o T~*"D > 0. ace.

VIII. ALUTHGE TRANSFORMATION OF k QUASI n-CLASS Q OF k QUASI n-CLASS Q* OPERATOR

_ 1 1

Let T = U|T| be the polar decomposition of T. Then the Aluthge transformation T = |T|2U|T|> was introduced by
~ 2 1 ~ —_t

and he defined T = |T|2U|T 2where T = U|T|. Also the

Aluthge[1]. An operator T is called w hyponormal if |T| > |T| > |T*
~ 1 1 - 1 1
adjoint of aluthge transformation is defined T* = |T|2U*|T |z, *-Aluthge transformation is T* = |T*|2U|T*|2, and adjoint of *-
~ % 1 1
Aluthge transformation is given by T* = |T*|2U*|T*|z.
Theorem 8.1

An operator T is k quasi n class Q if and only if (1 + n)T**|T|?Tk < T**
positive integer n.

T(1+")|2T" + nT**T¥ for all x € H and for every

Proof
Since T is k quasi n class Q operator, then T*¥ (T*(“")T(l*") -A+n)T'T+ nI)T" > 0 for every positive integer n. By
simple calculation we get the result.

Theorem 8.2
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If T = U|T|is the polar decomposition of k quasi n class Q operator T, then T is k quasi n class Q operator.

Theorem 8.3
If T is k quasi n class Q operator T and S is unitary such that TS = ST then A = TS is also k quasi n class Q operator.

Theorem 8.4
Let T = U|T| be the polar decomposition of k quasi n class Q operator T, where U is unitary if and only if T is k quasi n class
Q operator.

Proof
Suppose we assume that T is k quasi n class Q operator and T = U|T| is the polar decomposition of T, then we have that
TR(T* W7 — (1 + n)T*T 4+ nl)T* > 0 for every positive integer n.

e WUITH™*(WITH ™M ITH M — (1 +n)UITD*WITD + nl)UITDH* = 0

1
T*(1+n)|U(1+n)|T(1+n)|E —(1+n)
1 1 1 1
|T|ZU*|T*|U|T|z + nD)|T*|ZU*|T*|2 >0
& (7T — (1 + n)T*T + nl)T* >0
for every positive integer n. Hence T is k quasi n class Q operator.

1 1 1
PN |Tk|5U*|Tk|7(|T(1+n)|2U*(1+")

Theorem 8.5
Let T = U|T| be the polar decomposition of k quasi n class Q operator Tand U is unitary, then T is k quasi n class Q if and only
if T* is k quasi n class Q operator.

Proof
Suppose we assume that T is k quasi n class Q operator and T = U|T| is the polar decomposition of T, then we have that
TR(T*HW TN — (1 + n)T*T 4+ nl)T* > 0 for every positive integer n.

e WUITH™*(WITH M ITH ™ — (1 +n)UITD* WITD + nl)(UITDH* = 0

1
T*(1+n)|U(1+n)|T(1+n)|E —(1+n)
1 1 1 1
ITIZU*|T*|UIT|2 + nD)|T*|2U*|T*|2 = 0
e  THRTOmTO (1 4+ )T T + nl)T* >0
for every positive integer n. Hence T* is k quasi n class Q operator.

1 1 1
PN |Tk|5U*|Tk|7(|T(1+n)|2U*(1+")

Corollary 8.6
If that T is k quasi n class Q if and only if that T* is k quasi n class Q operator.

Theorem 8.7
Let T = U|T| be the polar decomposition of k quasin class Q operator T and U is unitary, then that T is k quasi n class Q if and

only if that T isk quasi n class Q operator.

Theorem 8.8

Let T = U|T| be the polar decomposition of k quasi n class Q operator T and U is unitary, then that T* is k quasi n class Q if
and only if that T isk quasi n class @ operator.

Theorem 8.9

An operator that T is k quasi n class Q* if and only if (1 + n)T**|T*|?T* < Tk
every positive integer n.

Theorem 8.10

If T = U|T| is the polar decomposition of k quasi n class Q* operator T, then that T is k quasi n class Q* operator.

T(1+”)|2T" + nT**T¥ for all x € H and for

Theorem 8.11
If that T is k quasi n class Q* operator T and S is unitary such that TS = ST then A = TS is also k quasi n class Q" operator.

Theorem 8.12
If that T is k quasi n class Q* if and only if that T* is k quasi n class Q* operator.

Theorem 8.13
If that T* is k quasi n class Q* if and only if that T isk quasi n class Q" operator.
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