Tensile, Compression and Flexural Behavior of Hybrid Fiber (Hemp, Glass, Carbon) Reinforced Composites

Suresha K V., Dr.Sumana B G., Dr H K Shivanand, Mahesha
Assistant Professor, Associate Professor, Associate Professor, Assistant Professor
Department of Mechanical Engineering,
Don Bosco Institute of technology, Bangalore, India
Governement Engineering College, Hasan,India
University Visvesvaraya College of Engineering, Bangalore, India
Shri Pillappa college of Engineering, Bangalore, India

Abstract— in recent years, there has been an increasing environmental consciousness and awareness of the need for sustainable development, which has raised interest in using natural fibers as reinforcements in polymer composites to replace synthetic fibers such as glass. Natural hybrid fiber, which consist of two relatively thin and stiff faces bonded to a low density core, offer many benefits such as high bending stiffness, good thermal and acoustic insulation properties, and high specific energy absorption. In this study, natural hybrid reinforced composites panels are made with Hemp fabric/glass fabric/Epoxy and Hemp fabric/carbon fabric/Epoxy 3mm thickness and composites are fabricated using Simple hand layup technique. Appropriate test methods as per standards and guidelines are followed to analyze mechanical behaviour of the composites. The physical and mechanical characteristics of the natural hybrid reinforced composites used for the fabrication of the sandwich panels are tested as per the ASTM standards. To characterize the tensile, compression and flexural properties of the natural composites, a series of tensile test, compression test and 3-point bending tests were conducted on the sandwich panels. A quantitative relationship between the Hemp fabric/glass fabric/Epoxy and Hemp fabric/carbon fabric/Epoxy has been established with varying thickness.

Key words—Hand layup, hemp fabric, carbon fabric, glass fabric, epoxy resin.

I. INTRODUCTION
Natural fibers, as reinforcement, have recently attracted the attention of researchers because of their advantages over other established materials. They are environmentally friendly, fully biodegradable, abundantly available, renewable, cheap and have low density. Plant fibers are light compared to glass, carbon and aramid fibers. The biodegradability of plant fibers can contribute to a healthy ecosystem while their low cost and high performance fulfills the economic interest of industry. Polymeric materials reinforced with synthetic fibers such as glass, carbon and agamid provide advantages of high stiffness and strength to weight ratio as compared to conventional construction materials, i.e. wood, concrete and steel. In spite of these advantages, the widespread use of synthetic fiber-reinforced polymer composite has a tendency to decline because of their high-initial costs and also production of synthetic composites requires a large quantum of energy and quality of environment suffered because of the pollution generated during the production and recycling of these synthetic materials.

II. RELATED WORK
T. Madhusudhan [1] conducted a research based on hybrid composites with the combination of Glass-Hemp and Sisal with epoxy resin as binder Epoxy resin in the hybrid composite will result in the strong bond for the materials. Hybrid composites are usually used when a combination of properties of different types of fibers have to be achieved, or when longitudinal as well as lateral mechanical performances are required. By adding the filler to the composite material we can further improve the performance of composites. In this study the filler was Tungsten Carbide (WC), it improves erosion resistance and increase the strength

C. Velmurugan[2] In this study, the properties of Hemp fiber is improved by combining it with glass fiber with the help of epoxy resin and its mechanical properties tensile, compression, impact strength and flexural strength is found out and compared. Due to their eco-friendly nature and sustainability, natural fiber reinforced composite are more popular nowadays. Artificial fiber reinforced composite are becoming more valuable due to their better properties. In order to improve the properties of natural fiber, it can be combined with artificial fiber to form hybrid composite.

M. Muthuvel[3] The aim of the present work was to investigate the hybridization of glass fibers with natural fibers for applications in the aerospace and naval industry. Mechanical properties such as tensile, impact and flexural test of hybrid glass/Hemp fiber reinforced epoxy composites in the forms of lamina and laminates were determined. The lamina prepared with natural fiber mat showed lower mechanical properties compared to laminas with glass mat. For this reason we proposed to use a
hybrid design for the various applications which makes use of glass woven fabrics and Hemp fiber mats. The adoption of this design allowed for a cost reduction of 20% and a weight saving of 23% compared to the current commercial solution.

III. MATERIAL AND METHODS

❖ Materials
Reinforcing Fibre: Hemp fiber 500gsm, E-glass fibre 200gsm & Carbon fibre 200gsm.
Matrix System: Epoxy Resin (lapox L-12 Atul ltd) & Hardener K-6.
Molding Process: Hand lay-up followed by Room temperature moulding.
Reinforcements: matrix ratio: 65:35

❖ Fabrication of the test laminates
Test laminates of 300 mm X 300 mm were initially fabricated to prepare mechanical test specimens by Hand lay-up followed by Room temperature.

❖ Preparation of the Resin Hardener System
The resin and hardener were to be mixed in a ratio of 100:10 by weight, as follows
1. An empty bowl and brush were taken and weighed.
2. Resin was added to the bowl and the brush setup and was placed on the electronic balance, till it registered the constant weight.
3. The hardener was added to the bowl and bowl was removed from the balance.
4. The resin and hardener were mixed thoroughly using the brush and is used
 Immediately in the preparation of the laminate, From now on this mixture will
 Be referred to as a “resin system”.

❖ Preparation of the reinforcing material
The fabric used was Hemp fibre of 500gsm E-glass fibre of 200 gsm and Carbon fibre in the form of rolls. The fabric roll is spread on the flat surface and required dimension of 300 mm x 300 mm is marked using the marker pen on the fabric spread and cut using a scissor manually. Required such layers of fabric were cut to get the required thickness of laminate in this study.

Fig 1: Hemp fabric 500gsm
Fig 2: Carbon fabric plain view 200gsm
Fig 3: E-glass fabric 200gsm

❖ Calculation of number of fiber layers for the laminates

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Material</th>
<th>Density (g/cm³)</th>
<th>Volume fraction (%)</th>
<th>Ultimate Tensile strength (Mpa)</th>
<th>Modulus (Gpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hemp Fiber</td>
<td>1.4</td>
<td>0.325</td>
<td>550</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Glass Fiber</td>
<td>2.5</td>
<td>0.325</td>
<td>2000</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>Carbon Fiber</td>
<td>1.76</td>
<td>0.325</td>
<td>4500</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>Epoxy</td>
<td>1.18</td>
<td>0.35</td>
<td>60</td>
<td>4.4</td>
</tr>
</tbody>
</table>

❖ Number of fiber layers for the each laminates:
1) Hemp/Carbon / Epoxy laminate 3mm thickness = 11 layers
2) Hemp/Carbon / Epoxy laminate 3mm thickness = 11 layers

❖ Layup process for laminate preparation
1. The resin and the hardener of required quantities are taken in a previously weighed empty bowl. They are mixed properly in the bowl using a paintbrush. The mixture is used immediately in the preparation of the laminate which otherwise would start gelatin.
2. A highly polished flat mould was cleaned and wiped dry with acetone
3. PVA wax was applied and was left for 20 minutes to dry. The wax was then applied in order to form a thin realizing film.
4. A small quantity of resin system was coated on the mould surface and then a layer of the fabric (300 x 300mm) already cut was placed on that.
5. The resin system was applied on the fabric to wet it and then the next layer of fabric was placed. The same procedure was followed till the required layers were placed ensuring adequate impregnation.
6. The mylar sheet was sticked on the topmost ply and specimen was rolled using roller. Repeat the same procedure for other two composites.
7. Finally the specimen was allowed to cure for 48hrs.
8. After RT curing, the specimens were hardened. The hardened specimens are ejected from the mould.
9. The laminates were properly labeled and kept aside for further processing.

Post curing
Post curing is a technique used to take to completion in the process of curing as well as to ensure the enhancement of the service temperature limits. The post curing, in essence, increases the glass transition temperature (Tg) of the cured composite laminate.

A step post curing cycle has been followed as outlined below
- The RT-cured specimens were placed in a hot air circulated oven.
- First specimens were heated to 50ºC and maintained at this temperature for 15 minutes
- Then the ILSS specimens were heated to 70ºC for 30 min.
- Finally the ILSS specimens were further heated to 85ºC for 1 hour and then allowed to cool down to room temperature on its own.

Preparation of specimens as per ASTM standards
Preparation of tensile specimens as per ASTM-D3039, Compression specimens as per ASTM-D1621, Flexural specimens as per ASTM-D790 standards for unidirectional laminates.
Fig 7: Geometry and dimensions of composite specimens for tensile test, compression test, and flexural test

IV. RESULTS AND DISCUSSION

Table 2: Tabulation of tensile test results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Peak load (KN)</th>
<th>Maximum displacement (mm)</th>
<th>Tensile Strength (MPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemp/Glass/Epoxy with 3mm thick laminate</td>
<td>15.87</td>
<td>11.87</td>
<td>145.86</td>
</tr>
<tr>
<td>Hemp/Carbon/Epoxy with 3mm thick laminate</td>
<td>18.39</td>
<td>15.50</td>
<td>202.38</td>
</tr>
</tbody>
</table>

❖ From the above table it is clear that Hemp/Carbon/Epoxy laminate having 3mm thickness shows more tensile strength than the Hemp/Glass/Epoxy with 3mm thick laminate.

Table 3: Tabulation of Compression test results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Peak load (KN)</th>
<th>Maximum displacement (mm)</th>
<th>Compression Strength (MPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemp/Glass/Epoxy with 3mm thick laminate</td>
<td>12.04</td>
<td>5.93</td>
<td>79.72</td>
</tr>
<tr>
<td>Hemp/Carbon/Epoxy with 3mm thick laminate</td>
<td>17.53</td>
<td>4.57</td>
<td>100.64</td>
</tr>
</tbody>
</table>

❖ From the above table it is clear that Hemp/Carbon/Epoxy laminate having 3mm thickness shows more compression strength and load than the Hemp/Glass/Epoxy with 3mm thick laminate.

Table 4: Tabulation of Flexural test results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Peak load (KN)</th>
<th>Maximum displacement (mm)</th>
<th>Flexural Strength (MPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemp/Glass/Epoxy with 3mm thick laminate</td>
<td>0.759</td>
<td>8.623</td>
<td>8.46</td>
</tr>
<tr>
<td>Hemp/Carbon/Epoxy with 3mm thick laminate</td>
<td>0.869</td>
<td>5.84</td>
<td>9.975</td>
</tr>
</tbody>
</table>

❖ From the above table it is clear that Hemp/Carbon/Epoxy laminate having 3mm thickness shows more flexural strength than the Hemp/Glass/Epoxy with 3mm thick laminate.

5.4 Comparison of tensile test, compression test, flexural test for Hemp/Glass/Epoxy and Hemp/Carbon/Epoxy laminates (Peak load vs Max Displacement graph)
Comparison of tensile strength, compression strength, flexural strength for Hemp/Glass/Epoxy and Hemp/Carbon /Epoxy laminates
V. CONCLUSIONS

❖ Specimens with varying thickness of laminates are fabricated by simple hand layup technique and they are:
 ➢ Hemp/Glass/Epoxy laminate composite (3mm thickness)
 ➢ Hemp/Carbon/Epoxy laminate composite (3mm thickness)

❖ From the composite s the test specimens have been prepared in accordance with the ASTM standards for
tensile, compression and flexural strength determination.

❖ In the overall study, the strength of Hemp/Carbon/Epoxy laminates has higher value than that of Hemp/Glass/Epoxy
laminates.

VI. ACKNOWLEDGEMENT

I would like to express my immense gratitude to Dr. Murulidhara Rao, Principal, Don Bosco Institute of Technology, Bengaluru,
for his timely help and inspiration during this research work. I express my sincere regards and thanks to Dr. A M Nagaraj
Professor and HOD, Department of Mechanical Engineering, DBIT, Bengaluru, for his encouragement and support and I
would like to express my sincere thanks to my Ph.D Guide Dr. H.K SHIVANAND, Associate Professor Department of Mechanical
Engineering, UVCE, Bengaluru for their encouragement and suggestions which helped me a lot in the completion of this research
work. Finally I would like to thank RAMAKRISHNAIAH, Assistant Professor Department of Mechanical Engineering, DSATE,
Bengaluru for completion of this work.

VII. REFERENCES

Hybrid Composites: Volume: 03 Issue: 04 | Apr-2016

[3] M. Muthuvelinvestigate the hybridization of glass fibers with natural fibers for applications in the aerospace and naval
industry

[4] P. PrabaharanGraceraj Investigation On Fatigue Strength Of The Hemp Fiber Reinforced Hybrid Polymer Matrix Composites,

application, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia, Defence Technology 12 (2016) 52–58

Department T4BETP Mechanical Engg, International Journal Of Engineering Research And Reviews ISSN 2348-697X
(Online) Vol. 4, Issue 1, Pp: (104-108),

[8] Ravi kumar M, Interlaminar Low-Velocity Impact Resistance of Hemp and E-Glass Hybrid Composite Laminates,
Department of Mechanical Engineering, S.J.C.Institute of Technology, Chickaballpur, Karnataka, Vol. 3, Issue 7, July 2014

Mécanique Et Éco-Matiéaux (Lmem), Université Du Québec À Trois-Riviéres (Uqtr), C.P. 500, Trois-Riviéres, Québec, Canada,
[10] C. Belkacemi Quasi-static mechanical characterization and fatigue of a composite laminates, Research Unit: Materials,
Processes and Environment (URMPE), M’hamed Bougara University of Boumerdes Advances in Applied Science Research,
2014, 5(3):328-335