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Introduction 

In this paper, Cardon and Murty’s [8, 9] work is restudied in the context of DLP. We propose DLP in algebraic varieties over 

finite field. We extended to this result to design the PKC. First, we go to preliminaries as start as from here: 

Materials and Method 

1. Finite Field 

A finite field is a field with a finite field order (i.e., number of elements), also called a Galois field. The order of a finite field is 

always a prime (p)or a power of a prime(p) [BirMac1996]. For each prime power, there exists exactly one up to an isomorphism 

finite field )( pGF , often written as np
F , if 

npq  then qF  in current usage. For a finite set ,X X denotes its cardinality. By 

f g for x X , or ( )f O g for x X , where X is an arbitrary set on which f is defined, we mean synonymously that 

there exists a constant 0C  such that ( ) ( )f x Cg x for all x X . The “implied constant” is any admissible value of C . It 

may depend on the set X which is always specified or clear in the context. We use elementary scheme-theoretic language for our 

algebraic geometry. 

2. Algebraic Variety over Finite Field 

In particular, an algebraic variety over a field F or over Z is simply a separated scheme of finite type over F or Z , and in 

fact only affine schemes will occur, so a variety is not necessarily reduced or irreducible. We write either AV  or /V A to indicate 

that a scheme is defined over a ring A . R= [ ]q TF  is the polynomial ring with coefficients in qF  over the indeterminate T and 

the function field ( )q TF  is the field of fractions of R. We will assume that g is an odd integer that is relatively prime to q. 

3. Polynomials in Finite Field 

The symbol p  will always represent a monic irreducible polynomial in R= [ ]q TF .The symbols n and m will also be monic 

(but not necessarily irreducible) polynomials in R of degrees j and k respectively. The expression ( )
m

f m would mean to 

product ( )f m over all monic polynomials m of fixed degree k . If a  and b  are elements of R , then ( , )a b represents the 

greatest common (monic) divisor of a and b . If a and b are ordinary integers then ( , )a b will denote the greatest common 

divisor in the usual sense. 

4. Finite Extension Field 

A field qF is said to be an extension field (or field extension, or extension), denoted by qFK /  of a field if qF is a subfield of K. 

For example, the complex numbers are an extension field of the real numbers, and the real numbers are an extension field of the 

rational numbers.  

5. Exponential Subfield 

An exponential subfield is a subfield F equipped with a homomorphism 
Fexp  from its additive group to its 

multiplicative group. The exponent subfield is associated to extension field degree (or relative degree, or index) of an 

extension field qFK / , denoted by ]:[ qFK , is the dimension of K as a vector space over Fq, i.e. 

(1)  
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.dim]:[ KFK
qFq   

6. Variety of Extension Fields 

Given a field qF , there are a couple of ways to define an extension field. If qF is contained in a larger field, 'qq FF  . Then by 

picking some elements 'qi F not in qF , one defines )( iqF  to be the smallest subfield of 'qF containing qF and the i . 

For instance, the rationals can be extended by the complex number  , yielding )(Q . If there is only one new element, the 

extension is called a simple extension. The process of adding a new element is called "adjoining." Since elements can be adjoined 

in any order, it suffices to understand simple extensions. Because i is contained in a larger field, its algebraic operations, such as 

multiplication and addition, are defined with elements in qF . Hence,  

.'0)(,,:
)(

)(
)(









 qqq FgFgf
g

f
F 




  (2)  

The expression above shows that the polynomials with p (α) = 0 are important. In fact, there are two possibilities.  

First, For some positive integer n, the nth power 
n can be written as a (finite) linear combination, 







1

0

,
n

i

i

i

n c    (3)  

with
qi Fc   and .)( npowers  In this case,  is called an algebraic number over qF and )(qF is an algebraic extension. 

The extension field degree of the extension is the smallest integer n satisfying the above and the polynomial 







1

0
)(

n

i

nxxp  is called the extension field minimal polynomial.  Otherwise, there is no such integer n as in the first case. 

Then  is a transcendental number over qF and )(qF is a transcendental extension of transcendental degree 1. 

7. Algebraic Extension Field 

 Note that in the case of an algebraic extension, the extension field can be written as; 

}.)(deg&:)({][)( nfreeFffFF qqq     (4)  

2. Unlike the similar expression above, it is not immediately obvious that the ring ][qF is a field. The following argument 

shows how to divide in this ring. Because no polynomial f of degree less than n can divide the extension field minimal polynomial 

p, any such polynomial f is relatively prime. That is, there exist polynomials a and b such that, ,1 bpaf or rather, 

)).((mod1)()( xpxfxa    

And )(a is the multiplicative inverse of ).(f  (5)  

8. Number Field 

A number field is a finite algebraic extension of the rational numbers. Mathematicians have been using number fields for 

hundreds of years to solve equations like kyx  22 2 where all the variables are integers, because they try to factor the 

equation in the extension )2(Q . For instance, it is easy to see that the only integer solutions to 

5))(()( 22  yxyxyx be )2,3(  since there are four ways to write 5 as the product of integers as: 

.155151155   

Hence, it became necessary to understand what a prime number field is. In fact, it led to some confusion because unique 

factorization does not always hold. The lack of unioque factorization is measured by the class group, and the class 

number. 

(6)  

It can be shown that any number field can be written )(Q for some ,that is every number field is a simple extension of the 

rationals. Naturally, the choice of  is not unique, e.g. 

...)()2()(   QQQ  

9. Product Operator type Representations of Finite Extension Fields 

Let, a basic type of any product can be expressed mathematically with the product operation (pie, ) symbolic notation as 

follows: 

 

(1)      ( , ) ( ( )),f

M n M N

P M N e f n
  

   

Where 
2( ) i ze z e  and f is some real-valued function.Here we give some basics about the product operation, because we 

broadly use this operation as a major tool to represent DLPs over extension fields from the exponent subfields. 

10. Product Operator 
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The product operator (  ) {Greek letter, capital pie} is an instruction to product over a series of values. For instance, if we 

have the set of values for the variable, X = {X1, X2, X3, X4, X5}, then 

 

 .54321

5

1

XXXXXX
n

i

i 


  
 

10.1. Example 

Literally, the expression,




5

1

n

i

iX , says: beginning with i=1 and ending with i=5, product over the variables Xi.  

 

Let 

 

 X1 = 8, X2 = 10, X3 = 11, X4 = 15,  X5 = 16. 

 

 Then n = 5 {the number of cases}, and 

 







5

1

.211200161511108
n

i

iX

 

 

11. Characteristics of Product Operator 

 

In many contexts, it is clear that the product is over all cases and we do not need the superscript over the product operator. 

Furthermore, in most contexts it is assumed that the product begins with i = 1. Hence, the notation,
i

iX is taken to 

imply




5

1

n

i

iX . In most situations, where the variable has only one subscript, as in Xi, the subscript can be omitted. In these 

situations,  X  implies




5

1

n

i

iX . 

12. Product operators for two subscripts 

In other contexts, the variable X may have more than one subscript, e.g., Xij. This occurs, for instance, when individual belongs to 

two or more subgroupings or cross-classifications. We might have a situation as shown below in Table 1. 

 

 Table 1 

Group 1 Group 2 Group 3 

X11, X21, X31, X41 X12, X22, X32, X42, X52, X62 X13, X23, X33, X43, X53 

 

 Here we have three groups, each with a different number of cases. We denote the ith case in the jth group with the 

symbol, Xij. To sum all the cases, over all three groups, we would use the following, double product operator, 

 

.
3


j

n

i

ij

j

X , 

12.1. Example  
Here, the above  instructs us to product over the three groups (j=1, 2, and 3) and, within each group, sum over the number of cases 

in the group (i=1, 2, 3, 4 for Group 1; i=1, 2, 3, 4, 5, 6 for Group 2; i=1, 2, 3, 4, 5 for Group 3). For simplicity, we often write the 

product expression as,  

 

 ,ijX  

 

where it is assumed that we are to product over all groups and all cases within each group. For example, let’s substitute the 

following numbers for the symbolic values given above. 

 

 

Table 2 
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Group 1 Group 2 Group 3 

10, 8, 12, 13 6, 11, 8, 10, 8, 12 14, 6, 6, 10, 9 

 

 

Then, 

 

     

     

10 8 12 13 6 11 8 10 8 12 14 6 6 10 9

12480 506880 45360

286941118464000.

ij ijX X   

              

  



  

 

      

 

 

A more complex situation occurs when cases are grouped into cross-classifications. Table 3 represents a situation where 

cases are cross-classified by some common properties. 

   

Table 3 

 

   

  1 2 3 

 

I 

 

X111, X211, 

X311, X411 

 

X112, X212, 

X312, X412 

 

X113, X213, 

X313, X413 

 

II 

 

X121, X221, 

X321, X421 

 

X122, X222, 

X322, X422 

 

X123, X223, 

X323, X423 

 

 

 

 To indicate product over all the cases in the above table, we would use the notation, 

 


k j i

ijkX .  

where it is assumed that the product is over all N cases, i, over all J rows, j, and all K columns, k. 

 

13. Product Operator Representation as DLP 

 

Let α be some constant value. Then, .
1

 


x
x

i

 

 

In other words, this direct operation is also referred as the exponent expression (and the inverse operation as the DLP), producing 

constant x times is the same as powering the constant by x. Hence, if α = 5, then  

 

.12555553
3

1


i

 .  

 

This rule can be extended to double product operation. Thus,  

 

.   













j

j

n
j

j

n

i

j

j

   

 

13.1. Example  
Let us consider, the situation involving the three groups given earlier in Table 2. If all cases, in all groups, have the constant 

value, 10, then  
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 

 

     

14. Product Operator Representation over the Finite Extension Field   

These tend to arise naturally in any asymptotic counting problem, as ways to express the secondary terms after isolating a “main 

term” and the basic goal is to establish some form of cancellation, of the type 

(2)      
1( ( )) ( ) ,

M n M N

e f n N N 

  

  

where the saving ( )N from the trivial bound N is a positive increasing function with ( )N    as N  . Evidently, 

it must be the case that f varies “fast enough” for such an estimate to hold. 

Various highly ingenious methods have been developed to deal with the distinct possible types of phase functions ;f the 

names of Weyl, van der Corput and Vinogradowv in particular are attached to the most classical ideas. It was however discovered 

that this type of analytic questions could sometimes be attacked using highly involved algebraic tools: if the interval of product 

operation is of the type 0 n p  , where p is prime, and if ( ) ( ) /f n g n p , where g be a polynomial or a rational is 

function, the best general results come from an interpretation as an exponential product over the finite field / .Z pZ  

Indeed, one introduces the “companion” products 

F

( ))
,

vp

v

x

Tr f x
P e

p

 
  

 
  

For 1v  , where F vp
is a field with 

vp elements, Tr: F F Z/ Zv pp
p  being the trace map. Although , 2vP v  , never (?) has 

any interpretation in analytic number theory, it is the properties of the generating function 

1

( ) exp vv

v

P
Z T T

v

 
  

 
  

In this context, this was first recognized and developed by A. Weil, who proved for instance that for a fixed (non-constant) 

function Z[ ]g X  one has 

/ 2( ) v

vP p p  

For all primes p and 1v  (with possibly few well-understood exceptions), with an implied constant depending only on g . See 

e.g. [IK] for a description of the elementary approach of Stepanov and [IK, 11.11] for a first survey of the more advanced 

cohomological methods of Grothendieck, Deligne, Kaatz and others. 

Results and Discussion 

1. Proposed Results 

In this chapter, we propose new DLPs for exponential subfield as a base field and extension of this base field by the product 

operators over finite fields which combine quite efficiently the cohomological methods (black-box) and some results and 

techniques of logic to give estimates where the product set in the finite field is much more general than the algebraic sets that are 

usually considered. We hope that this added flexibility will make it suitable for applications to analytic number theory; also the 

statement is, in itself, quite elementary with very few conditions. 

Our main focus on this results for the cryptographic applications to analytic number theory, it is clear that the potential of the 

more advanced results has not yet been fully exploited; there are a number of reasons for this, not only the complexity of the 

algebraic geometry involved (although that is certainly a factor), but also the difficulty of bringing a natural problem to a position 
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where the Riemann Hypothesis for varieties over finite fields can be applied successfully. We need only look at the proof of the 

Burgess estimate for short character products (see e.g. [IK] to see what ingenuity may be required; also the comments in [IK] 

explain how the question of uniformity in parameters and “flexibility” in the shape of the products can be crucial matters. The 

following theorem represents the rational functions as the exponential subfield by the product oprator with the multiplicative 

character conditions: 

 

1.1. Theorem [8, 9]:  Let ( )x be a first-order formula in the language (0,1, , , )   of rings. For every ring A, let 

( ) { ( ) }.A x A x holds    

Let , Q( )f g X  be rational functions with f non-constant. Let 1N  be the product of primes p such that 

f modulo p is constant. Then there exists a constant 0C  , depending only on  and the degree of the numerator and 

denominator of f and g such that for any prime p and any multiplicative character  modulo p we have 

(3)       
1/ 2

(Z/ Z)
( ), ( )

( )
( ( )) ( , ) .

x p
f x g x defined

f x
g x e C p N p

p




 
 

 
  

Compared to the classical products above, the point is that the product condition can be quite complicated, involving arbitrary 

entanglements of quantifiers (in first-order predicates, i.e., applied to elements of the field). One may also wonder if in fact the 

bound is really non-trivial (what if the number of points is usually of size 
1/ 4p , for instance ?), but in fact, as proved in [CDM] 

and as we will explain again in detail below, the number of points of summation is either   or or   cp , for some 1A  and 

0c  depending only on the formula  . And one should keep in mind that if this were applied to a problem of analytic number 

theory, whether this is efficient or not would most often is obvious from the final result anyway. The proposed DLP is given 

below by theorem 17.1. 

15. DLP 

15.1. Theorem: The number of square free elements of the form 
2 gn am  with deg( )n j  and deg( )m k  that are 

representable in more than one way is DLP for the value of g under the order ( ).j ko q 
 

Proof: Let S  be the collection of pairs ( , )m n  of monic polynomials m and n with deg( )n j and deg( )m k  such that 

2 gn am is representable in more than one way. We will determine an upper bound for S  thereby proving the lemma. Let 

1m and 2m be fixed unequal polynomials such that  

2 2

1 1 2 2

g gn am n am    

For some 1n  and 2n . Then 

2 2

1 2 1 2 1 2 1 2( ) ( )( )g ga m m n n n n n n       

 Which shows that the choices for 1n  and 2n  are determined by the divisors of
1 2( )g ga m m . 

Since
1 2deg( )g gm m gk  , the orst possible case is when 

1 2( )g ga m m is divisible by 1gk  distinct monic linear factors. In 

this worst case the number of (not necessarily monic) divisors is  
1

1

0

1
( 1) ( 1)2 .

gk
gk

v

gk
q q

v






 
   

 


. 

Notice that q is fixed but we vary k . So, this is a very crude upper bound on the number of divisors when k is large relative to 

.q Here the problem of computing the value of g is DLP. 

There are 
kq choices for 1m . Given 1m , the number of choices for 1n  is bounded by the number of choices for 2m  times the 

number of divisors of 1 2

g gm m . Thus the set S  contains 
2( 2 )k gkO q pairs. Since / 2j gk     or / 2 1gk     and 5q  , 

we obtain
2( 2 ) ( )k gk j kS O q o q   . 

 We have now shown that there are 
j kq 

 distinct values of
2 gD n am  . Since / 2j gk     or 

/ 2 1j gk     there are 

1 1
( )
2

gk
gq



distinct values of D . Therefore there are 

1 1
( )
2

l
gq



quadratic extensions  

( , )q T DF  of ( )q TF  such that deg( )D l . 

This completes the proof. 
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Although, we have given the four DLPs, but for the cryptographic applications, we care about some conditions, which associated 

to the number theory. We already defined the exponential subfields by the product operator representation, but, still we are facing 

the following questions, 

Q1. The proposed DLPs can be used to design PKC? 

Q2. The proposed DLP how distinct to the basic DLP? 

Q3. The proposed DLP only require the number theoretic studies? 

These series of the questions can be listed long, but we present the three fundamental questions, which plays the key role to 

design the real and practical PKCs. In the next section, we not only study the proposed results in the term of number theory but 

also we study the results under the logical parameters. In below, we give the PKC,   

16. PKC 

16.1. Key Generation Algorithm 

1. The number of squarefree elements of the form of DLP(g), ,2 gamnD   

2. The step 1 is defined with deg( )n j  and deg( )m k , 

3. The step 2 are representable in more than one way under the order ( ).j ko q 
 

4. The public key is (n2, a, m, D), 

5. The private key is (g). 

16.2. Encryption 

 .)(,)(],[ 2121

kkg DcDmcccCCiphertext 

 

16.3. Decryption 

.))((int 21

gccmextPla   

 

Conclusion  

17. PKC 

17.1. Key Generation Algorithm 
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