Computational Static and Dynamic Analysis of Sandwich Panel (Aluminium 2024 + Si3N4)

1Karthik G, 2Raghu Tilak Reddy M, 3Chethan K.Y
1PG Student, 2Assistant Professor, 3Assistant Professor
1Department of Mechanical Engineering,
1New Horizon College of Engineering, Bangalore – 560103
3Vemana Institute of Technology, Bangalore – 560034

Abstract - Utilization of Sandwich development for an airplane structural component is exceptionally regular to the present day. One of the essential requirements of aerospace auxiliary materials is that they ought to have low thickness, firm and solid. Sandwich boards are slight walled structures fabricated from two level sheets separated by a low thickness center. The center researched here is of Aluminium2024 alloy honeycomb structure due to superb smash quality and exhaustion resistance. Sandwich panels have a high firmness to weight proportion with deference equal strong plate in light of low thickness center. Displaying is created in FEA (ANSYS) by thought of rotating inactivity. The free vibration examination of isotropic plate and sandwich panels are contemplated. The after effects of FEA (ANSYS) are contrasted and result soft test and systematic work. Eight gestured (nodded) isoparametric shell component is utilized for FEA (ANSYS). Meeting study is additionally included for high accuracy of the outcomes. Systematic results depend on traditional bending theory. Mode shapes and comparing normal frequencies are contemplated for simply supported sandwich board. Parameters investigations of isotropic plate and sandwich boa are likewise secured in this examination. A detailed parameter study has been completed of an essentially bolstered sandwich panel by expanding the center profundity as a rate of its aggregate thickness, while keeping up a consistent mass.

IndexTerms—Sandwich panel, ANSYS, Aluminium 2024 + Si3N4, Static and Dynamic analysis

I. INTRODUCTION
Sandwich boards(panels) have been effectively utilized for a long time as a part of the avionics and aviation businesses, and in marine, and mechanical and structural designing applications. This is because of the chaperon high firmness and high quality to weight proportions of sandwich frameworks. The utilization of the sandwich developments in the aviation structures can be followed back to Second World War when English De Havilland Mosquito aircraft had used the sandwich developments. In the early utilize, the sandwich structure was exceptionally basic in development, with basic material, fabric or flimsy metal facings were utilized and delicate wood were utilized as the center.

The ordinary sandwich development includes a moderately thick center of low thickness material which isolates top and base faceplates (or faces or facings) which are generally thin however firm. The materials that have been utilized as a part of sandwich development have been numerous and changed yet in very late times enthusiasm for sandwich development has expanded with the presentation of new materials for use in the facings (e.g. fiber-strengthened composite covered material) and in the center (e.g. strong froths).

1.1 SANDWICH DEVELOPMENT
Sandwich development is an extraordinary sort of cover comprising of a thick center of frail, lightweight material sandwiched between two meager layers (called “face sheets”) of solid material figure (1.1). This is done to enhance auxiliary quality without a relating increment in weight. The decision of face sheet and center materials depends vigorously on the execution of the materials in the proposed operational environment.

In view of the partition of the center, face sheets can grow high twisting anxieties. The center settles the face sheets and builds up the required shear quality. Like the web of a pillar, the center conveys shear stresses. Dissimilar to the web, in any case, the center keeps up nonstop backing for the face sheets. The center must be sufficiently unbending oppositely to the face sheets to avoid smashing and its shear inflexibility must be adequate to counteract considerable shearing distortions. In spite of the fact that a sandwich composite never has a shearing unbending nature as awesome as that of a strong bit of face-sheet material, firm and light structures can be produced using legitimately planned sandwich composites.
A valuable order of sandwich composites as indicated by their center properties by separate heading is appeared in fig.1. To see the center impact upon sandwich quality, let us consider the honeycomb-center and the truss-center sandwich composite.

The honeycomb sandwich has a proportion of shear rigidities in the xz and yz planes of around 2.5 to 1. The face sheets convey in-plane compressive and elastic burdens, though the center balances out the sheets and develops the sandwich area.

The truss-center(core) sandwich has a shear unbending nature proportion of around 20 to 1. It can convey hub loads toward the center introduction and additionally perform its essential capacity of settling the face sheets and working up the sandwich segment.

1.2 PROPERTIES OF MATERIALS UTILIZED AS A PART OF SANDWICH CONSTRUCTION

No single known material or development can meet all the execution necessities of present day structures. Choice of the ideal auxiliary sort and material requires deliberate assessment of a few conceivable outcomes. The essential goal frequently is to choose the most productive material and setup for least weight outline.

1.2.1 Face Materials

Any auxiliary material which is accessible as slight sheet might be utilized to frame the characteristics of a sandwich board. Boards for high-proficiency flying machine structures use steel, Aluminum or different metals, albeit strengthened plastics are at times received in unique circumstances. In any effective sandwich the confronts demonstrate mainly in direct strain and pressure. It is in this way proper to decide the modulus of flexibility, extreme quality and yield or verification anxiety of the face material in a basic strain test. At the point when the material is thick and it is to be utilized with a powerless center it might be attractive to decide its flexural inflexibility.

1.2.2 Center(core) Materials

A center material is required to perform two vital errands; it must keep the countenances the right separation separated and it must not permit one face to slide over the other. It must be of low thickness. A large portion of the centers have densities in the extent 7 to 9.5 lb/ft³.

Balsa wood is one of the first center materials. It is normally utilized with the grain opposite to the characteristics of the sandwich. The thickness is somewhat variable yet the transverse quality and solidness are great and the shear firmness moderate.

Current extended plastics are around isotropic and their qualities and solidness' are generally relative to thickness.

If there should be an occurrence of Aluminum honeycomb center, every one of the properties increment logically with expansions in thickness of the foil from which the honeycomb is made.

In Aeronautic trade different basic outlines are expert to satisfy the required mission of the air ship. Since a persistently developing rundown of sandwich applications in airplane/helicopter (case Panther, Light Battle Air ship, Propelled Light Helicopter) incorporates fuselages, wings, ailerons, floor boards and capacity and weight tanks.

1.2.3ALUMINIUM 2024 (MATRIX) PROPERTIES

Aluminium alloy 2024 has a density of 2.78 g/cm³, electrical conductivity of 30% IACS, Young's Modulus of 73 GPa across all tempers, and begins to melt at 500 °C

2024 aluminium alloy's composition roughly includes 4.3-4.5% copper, 0.5-0.6% manganese, 1.3-1.5% magnesium and less than a half a percent of silicon, zinc, nickel, chromium, lead and bismuth.

2024-O temper aluminium has no heat treating. It has an ultimate tensile strength 207-220 MPa, and maximum yield strength of no more than 96 MPa. The material has elongation (stretch before ultimate failure) of 10-25%, this is the allowable range per applicable AMS specifications.

APPLICATION

Due to its high strength and fatigue resistance, 2024 is widely used in aircraft structures, especially wing structures under tension, the material is susceptible to thermal shock, 2024 is used in qualification of liquid penetrant tests outside of normal temperature ranges.

1.2.4SILICON NITRIDE (REINFORCEMENT) PROPERTIES

- High strength over a wide temperature range
- High fracture toughness
- High hardness
- Outstanding wear resistance, both impingement and frictional modes
• Good thermal shock resistance
• Good chemical resistance

APPLICATIONS
Fixed and moving turbine components, suction box covers, seals, thermal and wear applications.

II. METHODOLOGY

2.1 Modelling in SOLID WORKS/CATIA
In the last few years SOLID WORKS/CATIA software has become increasingly popular and is nowadays intensively used in geometric modeling. Since their conceptual simplicity allows for more flexible and highly efficient processing.
By obtaining the manufacturing and geometric dimensions of the component, draw the section of the component create the solid model by direct extrusion. All of the models were built in SOLID WORKS/CATIA, converted into .igs files, and imported into Static Structural projects within ANSYS Workbench 15 within Design Modeler, the geometry was slightly modified before it was imported into ANSYS Mechanical, as shown in Figure.

2.2 Meshing
Tetrahedron Method is used as well as Mapped Face Meshing on select faces. Edge sizing and face sizing were also used to get more elements on faces of interest and reduce the elements on less important faces such as the outer surface of the block.
After achieving an appropriate mesh, boundary conditions were applied to the model.

2.3 Vibration Analysis
The differential stiffness matrix is a function of the geometry, element type and applied loads. This is the reason why the differential stiffness is also called the geometric stiffness matrix.

2.4 Procedure for Free Vibration Analysis
ANSYS WORKBENCH is used to solve Natural frequency, following is the procedure listed below
1. Select modal analysis.
2. Import model .igs file.
3. Imported model should be mesh of 100 relevance.
4. Apply the boundary conditions.
5. Solve the current model
6. Get the solution of total deformation for 6 modes.
7. Note down the natural frequency of the component at different modes.
8. Repeat the same procedure for the components of solid structure, cell structure and foam filled cell structure.

III. ANALYSIS DIRECTED ON
Diverse sorts of sandwich center (core) and distinctive % of reinforcement (0, 6, 10%).
• Hexagonal center or core
• Quad center or core
• Truss center or core
• I-beam center or core

IV. STATIC ANALYSIS SIMULATION

Hexagonal core

![Hexagonal core simulation](image)

- Fig 4.1 For 0% reinforcement with hexagonal core
- Fig 4.2 For 6% reinforcement with hexagonal core
- Fig 4.3 For 10% reinforcement with hexagonal core

Quad core

Truss core
Fig 4.4 For 10% reinforcement with quad core

Fig 4.5 For 10% reinforcement with truss core

I beam core

Fig 4.6 For 10% reinforcement with I-beam core

MODAL ANALYSIS SIMULATION
Fig 4.7 For mode 1 and 2 total deformation result of hexagonal core

Fig 4.8 For mode 3 and 4 total deformation result of hexagonal core

Fig 4.9 For mode 5 and 6 total deformation result of hexagonal core
V. RESULTS AND DISCUSSIONS

STATIC ANALYSIS

HEXAGONAL CORE

<table>
<thead>
<tr>
<th>% 0F SI₃N₄</th>
<th>DEFORMATION mm</th>
<th>VON MISES STRESS MPa</th>
<th>ELASTIC STRAIN</th>
<th>STRAIN ENERGY(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0057506</td>
<td>13.796</td>
<td>0.00020825</td>
<td>0.0051972</td>
</tr>
<tr>
<td>6</td>
<td>0.0046639</td>
<td>15.867</td>
<td>0.00019007</td>
<td>0.0043021</td>
</tr>
<tr>
<td>10</td>
<td>0.0041905</td>
<td>15.908</td>
<td>0.00017132</td>
<td>0.0038783</td>
</tr>
</tbody>
</table>

Table 5.1

QUAD CORE

<table>
<thead>
<tr>
<th>% 0F SI₃N₄</th>
<th>DEFORMATION mm</th>
<th>VON MISES STRESS MPa</th>
<th>ELASTIC STRAIN</th>
<th>STRAIN ENERGY(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.010271</td>
<td>13.957</td>
<td>0.00019845</td>
<td>0.0054457</td>
</tr>
<tr>
<td>6</td>
<td>0.0085398</td>
<td>13.97</td>
<td>0.00016514</td>
<td>0.0045292</td>
</tr>
<tr>
<td>10</td>
<td>0.0076766</td>
<td>13.978</td>
<td>0.00014855</td>
<td>0.0040725</td>
</tr>
</tbody>
</table>

Table 5.2

TRUSS CORE

<table>
<thead>
<tr>
<th>% 0F SI₃N₄</th>
<th>DEFORMATION mm</th>
<th>VON MISES STRESS MPa</th>
<th>ELASTIC STRAIN</th>
<th>STRAIN ENERGY(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0098471</td>
<td>7.5954</td>
<td>0.00011466</td>
<td>0.0054469</td>
</tr>
<tr>
<td>6</td>
<td>0.0082007</td>
<td>7.6015</td>
<td>9.51E-05</td>
<td>0.0045495</td>
</tr>
<tr>
<td>10</td>
<td>0.00738</td>
<td>7.6056</td>
<td>8.54E-05</td>
<td>0.0041021</td>
</tr>
</tbody>
</table>

Table 5.3

I BEAM CORE

<table>
<thead>
<tr>
<th>% 0F SI₃N₄</th>
<th>DEFORMATION mm</th>
<th>STRESS MPa</th>
<th>STRAIN</th>
<th>ENERGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.053833</td>
<td>18.087</td>
<td>0.00025608</td>
<td>0.034222</td>
</tr>
<tr>
<td>6</td>
<td>0.044983</td>
<td>18.084</td>
<td>0.00021286</td>
<td>0.028617</td>
</tr>
<tr>
<td>10</td>
<td>0.040571</td>
<td>18.082</td>
<td>0.00019132</td>
<td>0.025821</td>
</tr>
</tbody>
</table>

Table 5.4

Graph 5.1 Overall static deformation
Graph 5.2 Overall vonmises stress
The overhead static analysis observation shows that deformation, strain energy, vonmises stress, and elastic strain is decreases in honeycomb structure with 10 % Si3N4 compare to other three different core. In truss core structure stress induced is less compare to honeycomb but deformation is more. Over all honey comb structure gives more stiffness compare to other three different core for static analysis.

MODAL ANALYSIS

FOR 10% WITH DIFFERENT MODELS

<table>
<thead>
<tr>
<th>MODES</th>
<th>HEXA</th>
<th>QUAD</th>
<th>TRUSS</th>
<th>I BEAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6534.3</td>
<td>6220.8</td>
<td>5773.9</td>
<td>2003.3</td>
</tr>
<tr>
<td>2</td>
<td>7986</td>
<td>7075.3</td>
<td>7084.7</td>
<td>3386.9</td>
</tr>
<tr>
<td>3</td>
<td>9191.4</td>
<td>9074.9</td>
<td>12033</td>
<td>4141.2</td>
</tr>
<tr>
<td>4</td>
<td>14017</td>
<td>12779</td>
<td>12382</td>
<td>6558.2</td>
</tr>
<tr>
<td>5</td>
<td>15412</td>
<td>13875</td>
<td>14153</td>
<td>6720.9</td>
</tr>
<tr>
<td>6</td>
<td>17364</td>
<td>14522</td>
<td>15236</td>
<td>9239.3</td>
</tr>
</tbody>
</table>

The overhead observation shows that natural frequency of the I beam core with 0% reinforcement is better compare to other three different core with reinforcement hence prevents more vibration.
TRANSIENT ANALYSIS

HEXA

<table>
<thead>
<tr>
<th>% 0F Si3N4</th>
<th>DEFORMATION</th>
<th>VON MISES STRESS</th>
<th>ELASTIC STRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00031739</td>
<td>0.52338</td>
<td>7.39E-06</td>
</tr>
<tr>
<td>6</td>
<td>0.00026368</td>
<td>0.52749</td>
<td>6.19E-06</td>
</tr>
<tr>
<td>10</td>
<td>0.00023691</td>
<td>0.53029</td>
<td>5.60E-06</td>
</tr>
</tbody>
</table>

Table 5.6

QUAD

<table>
<thead>
<tr>
<th>% 0F Si3N4</th>
<th>DEFORMATION</th>
<th>VON MISES STRESS</th>
<th>ELASTIC STRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00056638</td>
<td>0.73234</td>
<td>1.04E-05</td>
</tr>
<tr>
<td>6</td>
<td>0.00047088</td>
<td>0.73275</td>
<td>8.62E-06</td>
</tr>
<tr>
<td>10</td>
<td>0.00042327</td>
<td>0.73302</td>
<td>7.75E-06</td>
</tr>
</tbody>
</table>

Table 5.7

TRUSS CORE

<table>
<thead>
<tr>
<th>% 0F Si3N4</th>
<th>DEFORMATION</th>
<th>VON MISES STRESS</th>
<th>ELASTIC STRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00050249</td>
<td>0.37537</td>
<td>5.69E-06</td>
</tr>
<tr>
<td>6</td>
<td>0.00041845</td>
<td>0.37375</td>
<td>4.71E-06</td>
</tr>
<tr>
<td>10</td>
<td>0.00037656</td>
<td>0.37263</td>
<td>4.22E-06</td>
</tr>
</tbody>
</table>

Table 5.8

I BEAM

<table>
<thead>
<tr>
<th>% 0F Si3N4</th>
<th>DEFORMATION</th>
<th>STRESS</th>
<th>STRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0026917</td>
<td>0.90429</td>
<td>1.28E-05</td>
</tr>
<tr>
<td>6</td>
<td>0.0022492</td>
<td>0.90413</td>
<td>1.06E-05</td>
</tr>
<tr>
<td>10</td>
<td>0.0020285</td>
<td>0.90403</td>
<td>9.57E-06</td>
</tr>
</tbody>
</table>

Graph 5.5 Overall dynamic deformation

Graph 5.6 Overall dynamic vonmises stress
The overhead transient analysis observation shows that deformation, strain energy, vonmises stress, and elastic strain is decreases in honeycomb structure with 10 % Si₃N₄ compare to other three different core. In truss core structure stress induced is less compare to honeycomb but deformation is more

VI. CONCLUSIONS AND FUTURE SCOPE

It is watched that ALUMINIUM honeycomb sandwich board has more quality to weight proportion contrasted with uniform ALUMINIUM bar. From analysis test on the ALUMINIUM honeycomb sandwich beam example fluctuating the honeycomb center cell thickness, it was watched that with an expansion in the thickness of honeycomb center cell, the begin of plastic disfigurement could be deferred, bringing about increment of extreme quality. Twisting investigation is done on hexagonal honeycomb cored boards and there will be extension for study on square, TPS (level dividers or flat walls) and TPS (corrugated dividers) honeycomb cored boards. Distortion diminishes by presenting honeycomb structure. Stress and strains likewise diminishes by presenting honeycomb structure

VII. SCOPE FOR FUTURE EXPLORATION:

- Stability of sandwich beam under various operating conditions such as thermal.
- Stability of sandwich beam under various boundary conditions.
- Stability of multilayered sandwich beams

REFERENCES

