
© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939

IJEDR1602256 International Journal of Engineering Development and Research (www.ijedr.org) 1436

Marathi/Hindi to English Transliteration of Named

Entity using WEKA Tool
1Mayur Navsupe, 2Manikrao Dhore

Department of Computer Engineering, Vishwakarma Institute of Technology, Pune, India

__

Abstract - Phonetic property of a word is the property which describes the speech and pronunciation sound.

Transliteration is a mapping of a word into one language from another language without losing its phonetic properties.

Named entities (NE) are the words which are not found in the dictionary but they are used to support translation process.

The process of transliteration of these named entity is always have been difficult. There are no predefined rules or

regulation for transliteration which will not lead to loss of phonetic properties of named entities. People are writing

different spellings at different places for the same name. This fact certainly affects the top-1 accuracy of the transliteration

and in turn the transliteration process. We introduce the concept to use machine learning approach on NE data to solve

this problem. We have used WEKA tool, a machine learning tool for training of data. We have used SMO classifier for the

classification of NE data. We have applied set of linguistic rules on the predicted data for better results. Initial experiment

shows use of machine learning tool and SMO is very helpful for transliteration process.

Key Words - Transliteration, Named Entity, WEKA, SMO (Sequential minimal optimization), Linguistic.
__

I. INTRODUCTION

Since the evolution of India, Hindi is the National and Official language in most of the state Governed states and in all the

Centrally Governed States whereas Marathi is official language of Maharashtra state. But day by day English is also taking major

role in official works as most of official works are getting digitalized and English is only global and standardised one. So, there is

wastage of lots men work hours in simply translating the Marathi/Hindi Words (like Names, Surnames) into proper English

spells. It is challenging to transliterate out of vocabulary words like identity names, names of places and technical terms

occurring in the user input across languages with different characters (alphabets) and sounds. Hindi and Marathi to English named

entity (henceforth denoted as NE) transliteration is quite difficult due to many factors such as difference in script of language,

number of alphabets, capitalization of initial Characters, phonetic properties, length of character, number of valid

transliterations.[1]

There are two types of transliteration model which are as follows

i. Grapheme Based: It uses orthographic process and directly associates the source language grapheme/character to

respective target language grapheme/character.

ii. Phoneme Based: It uses phonetic process and thus converts source grapheme/character to source phoneme and then

source phoneme to target grapheme/character.

There are two primary needs for transliteration. They are:

1. In India, huge majority of the population use their mother-tongue as the medium of communication.

2. In spite of globalization and wide-spread influence of the West in India, most of the people still prefer to use their mother-

tongue.

Taking these two factors into consideration, we realize that for an Internet revolution to reach out to the majority of the

population; it should be accessible in the language, which is known to the user.

Therefore, mere approach of machine translation will not be inadequate to fulfil the needs of a correct source language

to target language without change in phonetic property.

II. RELATED WORK

In this section we provide the previous work done on the transliteration systems using machine learning techniques.

Antony P J, Ajith VP, and Soman KP of Amrita University, Coimbatore proposed three different approaches for English to

Kannada Transliteration [2]. The first proposed transliteration model out of three is based on multiclass classification for which

j48 decision tree classifier of WEKA was used for classification. They trained classifier with 40,000 Indian place names.

System is then tested with 1000 English names giving 81.25% Accuracy for top 1 result, 85.88% accuracy for top 2 results

and 91.32% Accuracy for top 5 results. The second method addresses the problem of Transliterating English to Kannada language

using Support Vector Machines. They used sequence labeling method to model the transliteration problem. The framework was

based on data driven method and one to one mapping approach. The model is trained on 40,000 words containing Indian place

names. System achieved exact Kannada transliterations for 87.28% of English names for top-5 results. Third English to Kannada

transliteration system was developed using a publically available translation tool called Statistical Machine Translation. System

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939

IJEDR1602256 International Journal of Engineering Development and Research (www.ijedr.org) 1437

was trained with 40,000 words containing Indian Places. System achieved exact Kannada transliterations for 89.27% of English

names.

Table1. Transliteration achieved by different approaches.

Authors Year Source and Target

Languages.

Methodology

Kumaran A and

Tobias Kellner [3]

2007 English to Tamil

transliteration system.

Machine transliteration framework based

on a core algorithm modeled as a noisy

channel.

Vijaya MS, Ajith VP,

Shivapratap G, and

Soman KP of Amrita

University,

Coimbatore.[4]

2008 English to Tamil

Transliteration using

machine learning approach.

Modeled as classification problem and

trained using C4.5 decision tree

classifier, in WEKA Environment.

Kang B. J. And Key-

Sun Choi.[5]

2008 English to Korean automatic

transliteration and back-

transliteration by decision

tree learning.

-Grapheme-based transliteration models

-English grapheme to Korean grapheme

conversion model based on decision

trees.

III. WEKA TOOL AND SMO:

WEKA (Waikato Environment for Knowledge Analysis) is open source machine learning software based on Java and it is

developed at the University of Waikato, New Zealand. WEKA tool contains variety of machine learning algorithms and supports

several data mining tasks. WEKA tool have features like data pre-processing, classification, clustering and visualization. The

machine learning algorithms can directly applied to user dataset or can be called from Java code.

(Sequential minimal optimization) SMO is an algorithm implemented in LIBSVM tool which is also present in WEKA

tool. SMO is widely used to solve quadratic programming (QP) problem that arises during the training of support vector machine.

Consider a binary classification problem with a dataset (x1, y1), ..., (xn, yn), where xi is an input vector and yi ∈ {-1, +1} is a

binary label corresponding to it. A soft-margin support vector machine is trained by solving a quadratic programming problem,

which is expressed in the dual form as follows:

subject to:

where C is an SVM hyper parameter and K(xi, xj) is the kernel function, both supplied by the user; and the variables are

Lagrange multipliers.

 The SMO algorithm selects two α parameters, αi and αj and optimizes the objective value jointly for both these α’s.

Finally it adjusts the b parameter based on the new α’s. This process is repeated until α’s converge [6].

IV. PRIMITIVE SCRIPT:

Both Marathi and Hindi languages were originated from Devanagari script and because of this both languages share

number of similar properties. Devanagari script is consists of 34 consonants, 7 loan consonant, 5 conjunct and 2 traditional signs.

It also has 12 pure vowels, 2 and 1 loan vowels from Sanskrit and English respectively. Also each consonant has 14 variations

combining with 14 vowels.

V. SYSTEM ARCHITECTURE

In this section we talk about the methodology that we have adapted to achieve transliteration of Marathi/Hindi named

entity into English language. As given bellow, Figure 1 shows the system architecture of proposed system. This section also put

light over the process through which raw data goes to be compatible for our proposed system. This section includes the details

regarding training phase of data and information regarding testing phase.

 The phases in which system architecture can be categorised are as follows.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org
https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Dual_problem
https://en.wikipedia.org/wiki/Kernel_function
https://en.wikipedia.org/wiki/Lagrange_multiplier

© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939

IJEDR1602256 International Journal of Engineering Development and Research (www.ijedr.org) 1438

1) Gathering of Training data

2) Training through WEKA tool

3) Testing of system

Figure 1: System Architecture

V.I Gathering Of Training Data

This section talk about the pre-processing of raw data into acceptable WEKA tool input format. Also about N-gram creator

class which enhance the training data into more useful data. As the proposed methodology uses the phoneme of source input as

one of the feature, representation of raw input in Devanagari needs to be done using the syllabic format of the source language. In

this approach one syllabic unit of source language has treated as a one phonetic unit. The overall pre-processing have achieved by

dividing task into following two sub modules.

· Syllabification

· Phonetic mapping

V.I.I Syllabification

In this phase we divide the NE's into segments of syllabic unit of source language.

These segments of NE, i.e, source transliterated unit (STU) are then mapped into translated target units (TTU).

Syllabification of source NE has done with the help of Java 6 which has in built Hindi Locale support , Locale hindi = new

Locale("hi","IN"). It works on the same principle as of Formation of Devanagari Phonetic Transliteration Units algorithm[7].

for example NE मयुर नवसुपे in Devanagari will be converted as

NE STU's

मयुर म | यु | र

नवसुपे न | व | सु | पे

V.I.II Phonetic Mapping

After the conversion of NE into STU's, we have manually mapped it to Transliterated target units (TTU's) as shown

bellow.

NE STU's TTU's

मयुर [म | यु | र] [ma | yu | r]

नवसुपे [न | व | सु | पे] [na | v | su | pe]

We have did this manually because when you take example in the case of /व/ which is pronounced as 'va' and 'v' so it can

be mapped to 'v' and 'va' that's why It is difficult to decide which one to use in a automatic way. Hence we have done this phase

manually.

V.I.III N-GRAM CREATOR

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939

IJEDR1602256 International Journal of Engineering Development and Research (www.ijedr.org) 1439

After phonetic mapping of NE's is done, it is then passed through the Java class written by us, which converts these NE

into n-grams set. It creates the different combinations of STU's and TTU's gram wise. Following are the example of NE to

different N-gram parallel STU's and corresponding TTU's.

1) [सु | रें | द्र] -> [su | ren | dra]

Unigram : Keeping single STU's and TTU's

STU: { सु , रें , द्र } TTU:{ su , ren , dra }

Bigram: Keeping two consecutive STU's and TTU's

STU: { सुरें , रेंद्र , सु , द्र } TTU:{ suren, rendra, su, dra }

Trigram: Keeping three consecutive STU's and TTU's

STU: { सुरेंद्र } TTU:{surendra}

2) [र | म | न | वी | र] -> [ra | ma | n | vee | r]

Unigram: Keeping single STU's and TTU's

 STU: { र , म , न , वी , र }

 TTU: { ra , ma , n , vee , r }

Bigram: Keeping two consecutive STU's and TTU's

 STU: { रम , नवी , र , मन , वीर }

 TTU: { rama, nvee, r, man, veer }

Trigram: Keeping three consecutive STU's and TTU's

 STU: { रमन, वीर , मनवी, र, नवीर }

 TTU: {raman,veer,manvee,r,nveer}

Fourgram: Keeping four consecutive STU's and TTU's

 STU: { रमनवी,र , मनवीर }

 TTU: {ramanvee,r,manveer}

Fivegram: Keeping five consecutive STU's and TTU's

 STU: { रमनवीर }

TTU: {ramanveer}

V.I.IIII WEKA compatible data

After the data has processed through n-gram creator class, we have got output as STU's and corresponding TTU's separated

by comma in a .csv extension file. This comma separated file contains Marathi/Hindi NE data in one column and corresponding

transliterated English NE is next column. CSV file is then given to WEKA tool for further training of this data. For our system we

have used 5000 NE data for training purpose.

V.II Training Phase

The processed data available in csv file is accepted by CSVLoader class of WEKA explorer tool. Then this data is trained

with SMO classifier of weka with second degree Polynomial kernel. Output of this phase is a .model file which we have used as a

predictor for this system.

Based on n-gram training data, polynomial kernel of SMO divides theses STU's and TTU's pattern to positive and negative

space as follows.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939

IJEDR1602256 International Journal of Engineering Development and Research (www.ijedr.org) 1440

Figure 2: Hyperplane for NE “सुरेंद्र”

V.III Testing Phase

This phase takes two files as input. One is the model file generated during training phase and

other is test file. The format of a test file is same as training file. It searches a particular pattern from a separating hyper

plane. Each pattern has a score value either positive or negative which indicates the distance of class form a separating hyperplane

in model file. If the given Hindi and Marathi input is in combination of the patterns which are there in model file, then generates

the correct output. If the pattern is not found then it shows garbage output i.e. incorrect English transliterated output.

For example: रमन is given for prediction to model file with unigram method on test file then the output is predicted as

follows

 र -> ra

म ->ma

न ->n

V.IV Apply Linguistic Rules

In this step, we have applied set of linguistic rules based on the output of transliteration phase. Based on initial experiment,

we have noticed there are very few “aa” in any named entity so we have eliminated it from the predicted output. As “गाव” is

transliterated as “gav” but when used in the named entity like,”उचकगाव” it should transliterated as “goan” for “Uchakgaon”.

Therefore for better accuracy, we have applied a rule for “गाव” as “goan” not “gav” or “gava” at the end of NE. Same case for

“वाडी”, instead of “vadi” we have applied rule “wadi”.

VI. EXPERIMENTAL DETAILS

This section talk about the overall implementation details of Marathi/Hindi to English machine transliteration using WEKA

tool.

VI.I Configuration
The implementation is done with the help of Netbeans development environment which has inbuilt support for JAVA

programming. The GUI is created using Java swings .WEKA SMO is set with polynomial kernel of degree two. Output of

training phase is a .model file which is saved and used as predictor in system. For testing, NE is divided into grams same as

training data and predicted for each gram wise.

VI.II Testing and Result

 The transliteration systems GUI is as shown in figure 2.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939

IJEDR1602256 International Journal of Engineering Development and Research (www.ijedr.org) 1441

Figure 2: GUI of transliteration system.

Training file contains 5000 names of persons, places. This file is then given to WEKA tool and model file is saved. Test

file consisting of 1000 NE is used for testing which given the results are shown in Table1.

Table 2: Test Result

Bi-gram Tri-gram Four-gram Fivegram

Number of NE trained 5000 5000 5000 5000

Number of NE tested 1000 1000 1000 1000

Number of correct NE 485 519 782 822

Accuracy 48.5 51.9 78.2 82.2

VI.III Result Analysis

The NEs with length two and length three has shown good accuracy for bigram and trigram respectively. From the result

table 1, we have seen that the accuracy is almost same in case of fourgram and fivegram. We have trained 5000 NE using WEKA

Toolkit and tested for 1000 NE data. When we have taken 1000 named entities as testing data, we have found maximum accuracy

as 48.5% for bigram , 51.9% using trigram , 78.2% using fourgram and 82.2% using fivegram .

VII. CONCLUSION

In this paper, we put forward the Hindi/Marathi to English machine transliteration using WEKA tool. We have used SMO

algorithm of WEKA tool as machine learning algorithm for classification purpose. As SMO creates the hyper plane using linear

polynomial function, it is useful for multiclass classification. Accuracy has been gradually increased as the n-gram sized

increased. Result analysis shows that 5-gram gives best result which is 82.2% for Hindi and Marathi to English named entity

transliteration.

REFERENCE

[1] M. L. Dhore “Issues and Possible Solutions for Hindi and Marathi to English Machine Transliteration of Named Entities”,

ICRTET at SNJB's Late Sau. K. B. Jain College Of Engineering, Chandwad (2014)

[2] P. J. Antony, Ajith, V. P., and Soman, K. P., “Statistical method for English to Kannada transliteration”, International

Conference on Recent Trends in Business Administration and Information Processing, BAIP 2010. Springer, Trivandrum,

Kerala, India, pp. 356–362 (2010),

[3] Kumaran, A., Kellner, Tobias: “A generic framework for machine transliteration.” In: Proceedings of the 30th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval , 2007, . pp. 721-722

(2007).

[4] Vijaya MS, Ajith VP, Shivapratap G, and Soman KP CEN, Amrita University, Coimbatore, India “English to Tamil

Transliteration using WEKA” in International Journal of Recent Trends in Engineering, Vol. 1, No. 1(2009)

[5] Kang B.J, Key-Sun Choi,. “Automatic Transliteration and Back-transliteration by Decision Tree Learning”, Proceedings

of the Second International Conference on Language Resources and Evaluation(2000).

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org
https://www.interaction-design.org/literature/author/a-kumaran
https://www.interaction-design.org/literature/author/tobias-kellner
https://www.interaction-design.org/literature/conference/proceedings-of-the-30th-annual-international-acm-sigir-conference-on-research-and-development-in-information-retrieval
https://www.interaction-design.org/literature/conference/proceedings-of-the-30th-annual-international-acm-sigir-conference-on-research-and-development-in-information-retrieval

© 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939

IJEDR1602256 International Journal of Engineering Development and Research (www.ijedr.org) 1442

[6] Platt, John. “Fast Training of Support Vector Machines using Sequential Minimal Optimization “ in Advances in Kernel

Methods – Support Vector Learning, B. Scholkopf, C. Burges, A. Smola, eds., MIT Press (1998).

[7] M L Dhore, P H Rathod. “Transliteration by orthography or phonology for hindi and marathi to english: case study” in

International Journal on Natural Language Computing (ijnlc) vol. 2, no.5, (2013)

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

