Use of Eco-Friendly additive like Fly ash to check the physical properties of rigid pavement

¹Mayur P. Patel, ¹Dhaval H. Patel, ²Priyank B. Shah

¹U.G. Student, ²Assistant Professor ^{1,2} Department of Civil Engineering, ^{1,2} SVBIT, Gandhinagar, Gujarat, India

Abstract - In the field of pavement construction, two types of pavements are generally constructed; rigid pavement & flexible pavement. The growth of flexible pavement as compared to rigid pavement is higher due to its low initial cost. On the other side rigid pavement has lower life cycle cost compared to flexible pavement due to its low maintenance cost & long life. The life of rigid pavement is about 30-40 years which is approximately 2.5 times the life of flexible pavement. Our aim is to reduce the initial cost or construction cost of rigid pavement. This can be done by replacing ingredients of rigid pavement such as replacement of cement by industrial waste like fly ash in the base layer. Fly ash is generated in huge quantities everyday as industrial waste. It has pozzolanic properties so it can be used as a replacement of cement. Use of fly ash in rigid pavement will be beneficial to transportation system, ecosystem, urban growth & rural development. In the present study different amount of fly ash 10,20 & 30% as a replacement of cement by weight in concrete is tested for various physical parameters of rigid pavement, like: compressive strength & flexural strength, skid resistance & cost reduction.

IndexTerms - Rigid pavement, reduce initial cost, fly ash.

I. INTRODUCTION

A pavement is a structure consisting of superimposed layers of processed materials above the natural soil sub-grade, whose primary function is to distribute the applied vehicle loads to the sub-grade. The pavement structure should be able to provide a surface of acceptable riding quality, adequate skid resistance, favourable light reacting characteristics, and low noise pollution. Paving materials include asphalt, concrete, stone, bricks, tiles, and sometimes wood.

II. PROBLEM IN RIGID PAVEMENT

The development of transportation plays a significant role in the economic development of the country. In the transportation system especially roads or pavements are one of the most important parts. In the construction of road networks growth of flexible pavements is more in comparison with rigid pavement. Despite its characteristics like low maintenance cost and long life, rigid pavements are not constructed widely due to its high initial cost.

At present, addition of fly ash as a replacement is one of the common methods applied for controlling the construction cost. It is widely believed that the addition of fly ash will maintain strength and decrease the initial cost of the rigid pavement.

III. MATERIALS

1) Cement - Ordinary Portland Cement of 53 grade confirming to IS12269-1987(9) is used in the present study. The properties of cement are shown in Table 1&2.

Table I	Physical	properties of	DI OPC 53	grade cement

Towns of some set	Setti	ng time	2
Types of cement	IST	FST	Compressive strength (N/mm ² 28
OPC – 53 grade (IS 12269 -	30	600	53

Table 2 Chemical	properties of OPC 53	grade cement
------------------	----------------------	--------------

Magnesium Oxide (MgO)	6 % Max
Chloride (Cl ⁻)	0.10 % Max
Alumina Iron ratio(A/F)	0.66 % Max
Sulphuric Anyhydride (SO3)	2.5 % Max

- Fine aggregate (sand) Natural sand as per IS: 383-1987 is used. Locally available river sand with bulk density1860 kg/m³, specific gravity 2.72 & fineness modulus 2.28 is used.
- 3) Coarse Aggregate Crushed aggregate confirming to IS: 383-1987 is used. Aggregates of size 20mm, 16mm and 12.5 mm of specific gravity 2.74 and fineness modulus 7.20 are used.

4) Fly ash - The fly ash used in this study is the unprocessed F-Class fly ash obtained from the local industry. The whole amount of fly ash is obtained from one batch.

Chemical Composition	% weight Fly ash
SiO ₂	53.79
Al ₂ O ₃	32.97
Fe ₂ O ₃	5.51
CaO	1.84
MgO	0.92
NaO	0.37
K ₂ O	1.76
TiO ₂	2.10
SO_2	0.46
P_2O_5	0.15

Table 3	Chemical	composition	of fly ash	
r able 5	Chemical	composition	of fry ash	

IV. MIX PROPORTIONS

Table 4 Mix Proportions

			Mat	erials			
Type of concrete	% reduction in cement	Cement kg/m ³	Fine aggregate kg/m ³	Coarse aggregate kg/m ³	Fly ash kg/m ³	W/C Ratio	
A1-M25	0	436	563	1149	0	0.44	
B1-M25	10	392.4	563	1149	43.6	0.44	
B2-M25	20	348.8	563	1149	87.2	0.44	
B3-M25	30	305.2	563	1149	130.8	0.44	

V. COMPRESSIVE STRENGTH TEST

Compressive strength test is carried out for concrete to check the strength of concrete in rigid pavement's base layer. Test results obtained on cubes of size 150x150x150 mm after 7,14 & 28 days of curing are as follow.

	Table 5 Compression strength results						
Туре	% replacement	Compre	ssion streng	trength N/mm ²			
	replacement	7 day	14 day	28 day			
A1-M25	0%	27.31	32.57	38.97			
B1-M25	10%	24.07	29.04	34.69			
B2-M25	20%	22.29	26.16	29.73			
B3-M25	30%	20.5	22.25	26.02			

VI. FLEXURAL STRENGTH TEST

Туре	% replacement	Flexural N/n	Strength	
		14 day 28 day		
A1-M25	0%	7.32	8.38	
B1-M25	10%	6.25	6.72	
B2-M25	20%	4.17	5.61	
B3-M25	30%	3.45	4.46	

Table 6 Flavural strength results

VII. SKID RESISTANCE TEST

Concrete Beam of size 500x100x100 mm after 28days curing was tested on British pendulum tester for skid resistance value. For 10% replacement, skid resistance value is found to be 65.

VIII. ECONOMIC ANALYSIS

Table 7 Present market rates					
Sr. No.	Materials	Rate (Rs/kg)			
1	Cement	5.60			
2	Fine aggregate	0.60			
3	Coarse aggregate	0.65			
4	Fly ash	0.60			

		Mate	erials	1		0 (
Type of concrete	Cement kg/m ³	Fine aggregate kg/m ³	Coarse aggregate kg/m ³	Fly ash kg/m ³	Total cost in Rs/m ³	% reduction in cost	
A1-M25	436	563	1149	0	3526.25	0	
B1-M25	392.4	563	1149	43.6	3308.25	6.18	
B2-M25	348.8	563	1149	87.2	3090.25	12.36	
B3-M25	305.2	563	1149	130.8	2872.25	18.55	

Table 8 Total cost analysis per m³

IX. CONCLUSIONS

As we use fly ash with replacement proportions 10,20 & 30% we get favourable results of physical properties of rigid pavement and are in acceptable limit. Fly ash can be used effectively as cementitious material for development of rural roads of low cost. Due to low cost of fly ash initial cost of rigid pavement is reduced. Cost reduction is found to be 6.18% for 10% replacement. Effective utilization of fly ash can save the thermal power industry's disposal costs and also reduces pollution.

1302

X. ACKNOWLEDGMENT

Many hands have given their active support and contributed for design, development and production of our project. It is very difficult to acknowledge their contributions individually, among them; first I express my gratitude to my guide Prof. Priyank B. Shah for their affection throughout guidance, advice and encouragement. Special thanks to my college for giving me the invaluable knowledge. Above all I am thankful to almighty god for everything.

References

- DarshBelani, Prof. JayeshkumarPitroda, "VALUE ADDITION TO FLY ASH UTILIZATION BY ECOEFFICIENT DEVELOPMENT OF RIGID PAVEMENT IN RURAL ROADS", Belani et al, International Journal of Advanced Engineering Research and Studies E-ISSN2249–8974
- [2] Mr.NageshTatobaSuryawanshi, Mr. Samitinjay S. Bansode, Dr. Pravin D. Nemade "Use of Eco-Friendly Material like Fly Ash in Rigid Pavement Construction & It's Cost Benefit Analysis" International Journal of Emerging Technology and Advanced Engineering (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 2, Issue 12, December 2012)
- [3] Er.Amit Kumar Ahirwar, Prof. Rajesh Joshi ,Er. KapilSoni"Laboratory Analysis of Fly Ash Mix Cement Concrete for Rigid Pavement." Er. AmitAhirwaretalInt. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 5, Issue 2, (Part -2) February 2015, pp.86-91
- [4] N. SUMI & R. MALATHY, "EXPERIMENTAL INVESTIGATION ON EFFECT OF FLY ASH AND STEEL SLAG IN CONCRETE PAVEMENTS", International Journal of Research in Engineering & Technology (IJRET) Vol. 1, Issue 2, July 2013, 117-124
- [5] VaishaliSahu, Gayathri. V ," The use of stabilized fly ash as green material in pavement substructure: A review", INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 4, No 3, 2014 ISSN 0976 – 4399
- [6] Prof. JayeshkumarPitroda, DarshBelani, "Fly Ash (F-Class): Opportunities For Sustainable Development Of Low Cost Rural Roads" International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue5
- [7] Nikhil T. R. "Use of High Volume Flyash in Concrete Pavements For Sustainable Development", international journal of scientific research Volume : 3 | Issue : 1 | January 2014 ISSN No 2277 8179
- [8] Tomas U. GanironJr, "Analysis of Fly Ash Cement Concrete for Road construction", International Journal of Advanced Science and Technology Vol.60, (2013), pp.33-44 http://dx.doi.org/10.14257/ijast.2013.60.04
- [9] YashShrivastava and Ketan Bajaj +" Performance of Fly Ash and High Volume Fly Ash Concrete in Pavement Design", 2012 IACSIT Coimbatore ConferencesIPCSIT vol. 28 (2012) © (2012) IACSIT Press, Singapore

1303