
© 2015 IJEDR | Volume 3, Issue 4 | ISSN: 2321-9939

IJEDR1504186 International Journal of Engineering Development and Research (www.ijedr.org) 1083

Test packet generation automatic way in a network

Balakrishna.G, Rajesh.Y

Computer Department, Andhra Loyola inst of eng & technology,Vijayawada

__

Abstract - We propose an automated and systematic approach for testing and debugging networks called “Automatic Test

Packet Generation” (ATPG). ATPG reads router configurations and generates a device-independent model. The model is

used to generate a minimum set of test packets to (minimally) exercise every link in the network or (maximally) exercise

every rule in the network. Test packets are sent periodically, and detected failures trigger a separate mechanism to

localize the fault. ATPG can detect both functional and performance problems.

Keywords - Data plane analysis, network troubleshooting, test packet generation

__

1.INTRODUCTION

It is notoriously hard to debug networks. Every day, network engineers wrestle with router misconfigurations, fiber cuts, faulty

interfaces, mislabeled cables, software bugs, intermittent links, and a myriad other reasons that cause net- works to misbehave or

fail completely. We tested our method on two real-world data sets—the back- bone networks of Stanford University, Stanford,

CA,USA, and Internet2. Representing an enterprise network and a nationwide ISP.

The results are encouraging: Thanks to the structure of real world rule sets, the number of test packets needed is surprisingly

small. For the Stanford network with over 757000 rules and more than 100 VLANs, we only need 4000 packets to exercise all

forwarding rules and ACLs. On Internet2, 35 000 packets suffice to exercise all IPv4 forwarding rules. Put another way, we can

check every rule in every router on the Stanford backbone 10 times every second by sending test packets that consume less than

1% of network bandwidth. The link cover for Stanford is even smaller, around 50 packets, which allows proactive livens testing

every millisecond using 1% of net- work bandwidth.

Fig .1 Static versus dynamic checking

The contributions of this paper are as follows:

1. a survey of network operators revealing common failures and root causes;

2. a test packet generation algorithm ;

3. a fault localization algorithm to isolate faulty devices and rules ;

4. ATPG use cases for functional and performance testing ;

2. EXISTING SYSTEM

Testing likeness of a network is a fundamental problem for ISPs and large data center operators. Sending probes between every

pair of edge ports is neither exhaustive nor scalable . It suffices to find a minimal set of end-to-end packets that traverse each link.

However, doing this requires a way of abstracting across device specific configuration files, generating headers and the links they

reach and finally determining a minimum set of test packets (Min-Set-Cover). To check enforcing consistency between policy

and the configurative.

Disadvantages of Existing System

‒ Not designed to identify livens failures, bugs router hardware or software, or performance problems.

‒ The two most common causes of network failure are hardware failures and software bugs.

‒ That problems manifest themselves both as reach ability failures and throughput/latency degradation.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2015 IJEDR | Volume 3, Issue 4 | ISSN: 2321-9939

IJEDR1504186 International Journal of Engineering Development and Research (www.ijedr.org) 1084

3. PROPOSED SYSTEM

Framework that automatically generates a minimal set of packets to test the livens of the underlying topology and the congruence

between data plane state and configuration specifications. The tool can also automatically generate packets to test performance

assertions such as packet latency. It can also be specialized to generate a minimal set of packets that merely test every link for

network livens

Advantages of Proposed System:

‒ A survey of network operators revealing common failures and root causes.

‒ A test packet generation algorithm.

‒ A fault localization algorithm to isolate faulty devices and rules.

‒ ATPG use cases for functional and performance testing.

Evaluation of a prototype ATPG system using rule sets collected from the Stanford and Internet2 backbones.

3.1. Current Proposal
ATPG uses the header space framework—a geometric model of how packets are processed. In header space, protocol-specific

meanings associated with headers are ignored: A header is viewed as a flat sequence of ones and zeros. A header is a point (and a

flow is a region) in the space, where is an upper bound on header length. By using the header space framework, we obtain a

unified, vendor-independent, and protocol-agnostic model of the network2 that simplifies the packet generation process

significantly.

A. Definitions:

Summarizes the definitions in our model.

Packets: A packet is defined by a(port, header) tuple, where the denotes a packet’s position in the network at any time instant;

each physical port in the network is assigned a unique number.

Switches: A switch transfer function, T, models a network device, such as a switch or router. Each network device contains a set

of forwarding rules (e.g., the forwarding table) that determine how packets are processed. An arriving packet is associated with

exactly one rule by matching it against each rule in descending order of priority, and is dropped if no rule matches.

Rules: A rule generates a list of one or more output packets, corresponding to the output port(s) to which the packet is sent, and

defines how packet fields are modified. The rule abstraction models all real-world rules we know including IP forwarding

(modifies port, checksum, and TTL, but not IP address); VLAN tagging (adds VLAN IDs to the header); and ACLs (block a

header, or map to a queue). Essentially, a rule defines how a region of header space at the ingress (the set of packets matching the

rule) is transformed into regions of header space at the egress.

Rule History: At any point, each packet has a rule history: an ordered list[r0,r1...] of rules the packet matched so far as it

traversed the network. Rule histories are fundamental to ATPG, as they provide the basic raw material from which ATPG

constructs tests.

Topology: The topology transfer function, , models the network topology by specifying which pairs of ports(Psrc,Pdst) are

Bit b= 0I1Ix

Header h =[b0,b1,b2….bL]

Port p=1I2I...INIdrop

Packet pk = (p, h)

Rule r : pk —> pK or [pk]

Match r.matchset : [pk]

Transfer Function T : pK —>pK or [pK]

Topo Function T: (Psrc, h)-> (pdst, h)

function Ti(pk)

#Iterate according to priority in switch i

for r ruleseti do

if pk r.tnatchset then

pk.history <-- pk.historyU{r}

return r(pk)

return {(drop,pk.h)}

function NETWORK(packets, switches, T')

for pk0 packets do

T <—FIND_swiTcH(pko.p, switches)

for pk1 T(pko) do

 if pk1.p EdgePorts then

 #Reached edge

RECORD(pk1)

else

 #Find next hop

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2015 IJEDR | Volume 3, Issue 4 | ISSN: 2321-9939

IJEDR1504186 International Journal of Engineering Development and Research (www.ijedr.org) 1085

NETWORK(T(pk1), switches, T)

Life of a packet: repeating and until the packet reaches its destination or is dropped. connected by links. Links are rules that

forward packets from Psrc to Pdst to without modification. If no topology rules match an input port, the port is an edge port, and

the packet has reached its destination.

B. Life of a Packet

The life of a packet can be viewed as applying the switch and topology transfer functions repeatedly. When a packet pK arrives at

a network port , the switch function that contains the input port pK.p is applied to pK, producing a list of new

packets[pK1,pK2,...]. If the packet reaches its destination, it is recorded. Otherwise, the topology function is used to invoke the

switch function containing the new port. The process repeats until packets reach their destinations (or are dropped).

4.IMPLEMENTATION

Java Technology:
Java technology is both a programming language and a platform.

The Java Programming Language:

The Java programming language is a high level language that can be characterized by all of the following buzzwords:

‒ Simple

‒ Dynamic

‒ Object oriented

‒ Portable

‒ Distributed High performance

With most programming languages, you either compile or interpret a program so that you can run it on your computer. The Java

programming language is unusual in that a program is both compiled and interpreted. With the compiler, first you translate a

program into an intermediate language called Java byte codes —the platform independent codes interpreted by the interpreter on

the Java platform. The interpreter parses and runs each Java byte code instruction on the computer. Compilation happens just

once; interpretation occurs each time the program is executed. The following figure illustrates how this works.

Fig 4.1.Automatic Test Packet

5.IMPLIMENATION

Modules:

‒ Test Packet Generation

‒ Generate All-Pairs Reach ability Table

‒ ATPG Tool

‒ Fault Localization

Modules Description:

Test Packet Generation: We assume a set of test terminals in the network can send and receive test packets. Our goal is to

generate a set of test packets to exercise every rule in every switch function, so that any fault will be observed by at least one test

packet. This is analogous to software test suites that try to test every possible branch in a program. The broader goal can be

limited to testing every link or every queue. When generating test packets, ATPG must respect two key constraints First Port

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2015 IJEDR | Volume 3, Issue 4 | ISSN: 2321-9939

IJEDR1504186 International Journal of Engineering Development and Research (www.ijedr.org) 1086

(ATPG must only use test terminals that are available) and Header (ATPG must only use headers that each test terminal is

permitted to send).

Generate All-Pairs Reach ability Table: ATPG starts by computing the complete set of packet headers that can be sent from

each test terminal to every other test terminal. For each such header, ATPG finds the complete set of rules it exercises along the

path. To do so, ATPG applies the all-pairs reach ability algorithm described. On every terminal port, an all- header (a header that

has all wild carded bits) is applied to the transfer function of the first switch connected to each test terminal. Header constraints

are applied here.

ATPG Tool: ATPG generates the minimal number of test packets so that every forwarding rule in the network is exercised and

covered by at least one test packet. When an error is detected, ATPG uses a fault localization algorithm to determine the failing

rules or links.

Fault Localization: ATPG periodically sends a set of test packets. If test packets fail, ATPG pinpoints the fault(s) that caused the

problem. A rule fails if its observed behavior differs from its expected behavior. ATPG keeps track of where rules fail using a

result function “Success” and “failure” depend on the nature of the rule: A forwarding rule fails if a test packet is not delivered to

the intended output port, whereas a drop rule behaves correctly when packets are dropped. Similarly, a link failure is a failure of a

forwarding rule in the topology function. On the other hand, if an output link is congested, failure is captured by the latency of a

test packet going above a threshold.

6.CONCLUSION

Network managers today use primitive tools such as ping and trace route. Our survey results indicate that they are eager for more

sophisticated tools. Other fields of engineering indicate that these desires are not unreasonable: For example, both the ASIC and

software design industries are buttressed by billion- dollar tool businesses that supply techniques for both static (e.g., design rule)

and dynamic (e.g., timing) verification. In fact, many months after we built and named our system, we discovered to our surprise

that ATPG was a well-known acronym in hardware chip testing, where it stands for Automatic Test Pattern Generation [2]. We

hope network ATPG will be equally useful for automated dynamic testing of production networks.

Testing livens of a network is a fundamental problem for ISPs and large data center operators. Sending probes between every pair

of edge ports is neither exhaustive nor scalable. It suffices to find a minimal set of end-to-end packets that traverse each link.

However, doing this requires a way of abstracting across device specific configuration files (e.g., header space), generating

headers and the links they reach (e.g., all-pairs reach ability), and finally determining a minimum set of test packets . Even the

fundamental problem of automatically generating test packets for efficient livens testing requires techniques akin to ATPG.

References

[1] “ATPG code repository,” [Online]. Available: http://eastzone.github.com/atpg/

[2] “Automatic Test Pattern Generation,” 2013 [Online]. Available:

http://en.wikipedia.org/wiki/Automatic_test_pattern_generation

[3] P. Barford, N. Duffield, A. Ron, and J. Sommers, “Network performance

anomaly detection and localization,” in Proc. IEEE INFOCOM, Apr. , pp. 1377–1385.

[4] “Beacon,” [Online]. Available: http://www.beaconcontroller.net/

[5] Y. Bejerano and R. Rastogi, “Robust monitoring of link delays and faults in IP networks,” IEEE/ACM Trans. Netw., vol. 14,

no. 5, pp. 1092–1103, Oct. 2006.

[6] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation of high-coverage tests for complex systems

programs,” in Proc. OSDI, Berkeley, CA, USA, 2008, pp. 209–224.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

