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Abstract - In this paper, we study Aleshin type finite automata with membership values in a lattice, which are called 

lattice-valued Aleshin Type finite automata. The extended subset construction of lattice-valued finite automata is 

introduced, then the equivalences between lattice-valued Aleshin type finite automata, lattice-valued deterministic Aleshin 

type finite automata and lattice-valued Aleshin type finite automata with -moves are proved. A simple characterization of 

lattice-valued languages recognized by lattice-valued Aleshin type finite automata. 

 

Index Terms - Aleshin type finite automata, lattice-valued deterministic Aleshin type finite automata. 
________________________________________________________________________________________________________ 

I. INTRODUCTION 

The concept of fuzzy automata was introduced in the very early age of fuzzy set theory [7,16,23,32]. Since finite automata 

constitute a mathematical model of computation, fuzzy finite automata may be considered as an extended model which includes 

notions like ‘‘vagueness’’ and ‘‘imprecision’’, i.e., notions frequently encountered in the study of natural languages. So 

investigating fuzzy finite-state automata might reduce the gap between formal languages as studied in classical automata theory [8] 

on the one hand and natural languages on the other hand. Usually, fuzzy automata took values in the unit interval [0,1]. To enhance 

the processing ability of fuzzy automata, the membership grades were extended to much general algebraic structures. For example, 

automata theory based on complete residual lattices-valued logic has been primarily established in [24–26], and automata theory 

based on lattice-ordered monoids has been established in [19]. In fact, fuzzy finite automata could be considered as a special 

instance of weighted automata considered recently [4,13,31,9], where weighted automata take values in semirings, more general 

structures than lattice-ordered monoids when a lattice-ordered monoid is considered as an idempotent semiring [13]. Of course, 

there are some distinct differences between fuzzy automata and weighted automata. In fuzzy automata, it is stressed the role of 

order (or hierarchy) and fuzzy logic in automata theory, while, for weighted automata, it is emphasized the weight of source used in 

automata theory. 

We can use fuzzy rules to represent fuzzy automata [6], and fuzzy automata can be seen as a special kind of discrete fuzzy 

systems [18]. While weighted automata can be seen as the algebraic treatment of automata using semiring and formal power series 

[5,14]. When we use a lattice as the truth value domain of fuzzy automata or as a semiring involved in weighted automata, this 

lattice should satisfy distributive law. On the other hand, there are many kinds of lattices that are not distributive lattices. The 

lattices M3 (the diamond) and N5 (the pentagon) in Fig. 1 are two simple examples. The free lattices generated by more than two 

elements are the other instances. There are some deep reasons to study such automata. First, this work may provide some useful 

ideas and more general framework to study automata theory based on quantum logic [33, 27–29]. As we know, automata based on 

quantum logic used orthomodular lattices [11] as the truth values of the automata considered. In general, an orthomodular lattice as 

a lattice needs not to be a distributive lattice. Indeed, automata theory based on quantum logic, which maybe thought of as a logic 

foundation for quantum computing and quantum information, has some essential differ-ence with classical automata and forms an 

important direction in the study of quantum computation, see [33,27,28] for the detailed explanation. In an orthomodular lattice, 

orthomodular laws hold instead of distributive laws, the Chinese lantern MO2 in Fig. 1 is one of such examples. For any Hilbert 

space H, the closed subspaces of H under the order of subset inclusion forms the standard orthomodular lattice which can be 

considered as the logic of quantum mechanics, see [2,11] for the de-tailed explanation. However, there are many (ortho-) lattices 

which do not satisfy the orthomodular laws. The simplest one is the lattice O6 as in Fig. 1. We want to know how about the 

behaviors of finite automata with membership values in a gen-eral lattice. In this paper, we will use lattices as the structures of truth 

values domain. We do not require the used lattice to be distributive, so the used lattice needs not to be a semiring. We would obtain 

much more general results than fuzzy finite automata and weighted automata. Second, these results may be useful in multi-valued 

model checking. Some related work has been done using multi-valued automata in Ref. [3,15], where the multivalued domain is 

chosen as a De Morgan distributive lattice. We shall extend multi-valued domain to a general lattice. 
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Fig. 1 Lattice diagram 

The contribution of this study contains at least three aspects. First, as we just said, lattice-valued Aleshin type finite automata in 

this study are a common generalization of fuzzy automata and weighted automata. In this respective, the role of the distributive law 

for the truth valued domain of finite automata is analyzed. It is demonstrated that the distributive law is not necessary to many 

constructions of lattice-valued finite automata, but it indeed provides some convenience in simply processing lattice-valued finite 

automata. Second, the technique of extended subset construction is introduced, using this technique, the equivalence between 

lattice-valued Aleshin type finite automata and lattice-valued deterministic finite automata is proved. 

II. FINITE AUTOMATA WITH MEMBERSHIP VALUES IN A LATTICE L 

A lattice is a 6-tuple l = (L, , , 0,1), 0 and 1 are the least and largest elements of L, respectively,  is the partial ordering in L; 

and for any a, b  L, a  b and a  b stand for the greatest lower bound (or meet) and the least upper bound (or join) of a and b, 

respectively. We need lattice-valued logic (called l-valued logic in the paper, and it is indeed the geometric logic as studied in [2], 

which is to provide algebraic semantics for observable events) to represent automata in this paper. We define it in the following 

way. Since there is no negation operation and implication operation in a general lattice, we do not mention the negation connective 

and implication connective in lattice-valued logic. Similar to that of classical first-order logic, the syntax of l-valued logic has two 

primitive connectives  (conjunction),  (disjunction), and two primitive quantifier  (existential quantifier) and  (universal 

quantifier). In addition, we need to use some set-theoretical formulas. Let  (mem-bership) be a binary (primitive) predicate 

symbol. Then  and   (equality) can be defined with  as usual. 

The semantics of l-valued logic is given by interpreting the connectives  and  as the operations  and  on l, respectively, 

and interpreting the quantifier  and  as the least upper bound and the greatest lower bound in l. Moreover, the truth value of set-

theoretical formula x A is [x  A] = A(x). In the l-valued logic, 1 is the unique designated truth value; a formula u is valid iff [ ] 

= 1, and denoted by t. In order to distinguish the symbols representing languages and the symbols representing lattices, we use 

symbol l to represent a lattice, and use L to represent language. We use the symbols a, b, c, d, k to represent the elements of l. 

Construction of 4-state Aleshin type automaton, A(S) 

The Aleshin automaton is nothing but the complement of output function of Bellaterra automaton. The corresponding Aleshin 

automaton is as follows. 

 The constructed Aleshin type automaton S, [A(S)] over the alphabet X= {0, 1} with the set of internal states Q ={a, b, c, d}. 

The state transition function φ and the output function ψ of A(S) are defined as follows:  

(a,0)=d,(a,1)=b,(b,0)=b,(b,1)=c,(c,0)=d,(c,1)=d,(d,0)=a,(d,1)=a; 

ψ(a,0)=1,ψ(a,1)=0,ψ(b,0)=1,ψ(b,1)=0,ψ(c,0)=0,ψ(c,1)=1,ψ(d,0)=0,ψ(d,1)=1 

 

 
Fig. 2 Aleshin type automaton 

 

Definition  

An l-valued Aleshin finite automaton (l-VFA for short) is a 5-tuple A = (Q, , , I, F), where Q denotes a finite set of states,   

a finite input alphabet, and ,an l-valued subset of Q x xQ; that is, a mapping from Q x xQ into l, and it is called the l-valued 

transition relation. Intuitively,  is an l-valued (ternary) predicate over Q,   and Q, and for any p, q  Q and r , d(p, r, q) stands 

for the truth value of the proposition that input r causes state p to become q. I and F are l-valued subsets of Q; that is, a mapping 

from Q into l, which represent the initial state and final state, respectively. For each q  Q, I(q) indicates the truth value (in the 

underlying lattice-valued logic) of the proposition that q is an initial state, F(q) expresses the truth value of the proposition that q is 

a finial state. 
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Fig. 3 Lattice valued Aleshin type automaton 

The propositions of the form  

“q is an initial state “ written  qI, q is a final state , written qF, 

input r causes state q to become p, according to the specification given by , written by (q,r,p) 

Denote the atomic propositions in our logical languages designated for describing l-valued Aleshin type automaton A. The truth 

values of the above three propositions are respectively I(q), F(q) and (q, r, p). We use the symbols r, s to represent the elements in 

, use the symbols x, h to denote the strings over , and use e to represent the empty string over . Let * denote the set of all 

strings over . We use the symbols A; B to denote the l-valued finite automata. 

 

For an l-VAFA A, the l-valued unary recognizability predicate recA over * is defined as a mapping from * into l: for each x 

 *, let x = r1……rn for some n  0, 

 

x  recA = def (q0  Q ) …. (qn  Q)…..(q0  I  qn  F  (q0, r1, q1) ……(qn-1, rn, qn) 

 

In other words, the truth value of the proposition that x is recognizable by A is given by 

 

recA(x) =    {I(q0)  (q0, r1, q1)….  (qn_1,rn, qn)  F(qn) : q0, . . . , qn Q} 

 

We call recA the l-valued language recognized or accepted by l-VAFA A. We use l(*) to denote the set of all l-valued 

languages over *, which is an l-valued subset of *; that is, a mapping from * to l. For an A  l(*), if there is an l-VAFA A 

such that A =  recA, then we call A an l-valued regular language or l-regular language on R, which is also called lattice-valued 

regular language without mentioning the truth-valued lattice. 

 

We give an example to illustrate the definition of l-VAFA. 

Example  

Let l be the lattice Ns as shown in Fig. 1. Write the elements of l as 0, 1, a, b, c, where b < a and c cannot be comparable with a 

and b. An l-VFA A = (Q , ,,  I, F) is defined as follows, where Q = {q0, q1, q2, q3, q4},  = {0,1}, (q0,0, q1) = b,  ( q0,0, q2) =c,  

( q1, 1,q1) = l , 

( q2,0, q2) = l, ( q1,0, q3) =l, ( q3,0, q4) =a,  ( q4, 0, q4) =1 , ( q4, l , q4) = l   

and I =   , F =    This l-VFA is represented as in Fig. 2, where we use tT     to  denote 

 the l- valued subset with nonzero at, at the element xt ,  for tT and T is an index set and if (q, r,p) =   then there is an  edge   

label   from the node with name q to the node p in the graphic representation  of the l- valued VFA A. By the simple calculations, 

we can see that   

recA(x) = (a  b)  (a  c) =  b if x  01*00(0 + 1)*, and recA(x ) = 0 in the other cases. 

The extension of d, denoted *, is defined as follows, 

 

(i)  pQ, if  p=q, then *(q,, p) = 1, otherwise *(q,,p)  =0 

    (ii)  = r1……rn   *, *(q, r1……rn,  p) =    {(q , r1 , q1)….( qn-1, rn, qn):q1…….. qn-1  Q} 

As far as the extension *  is concerned , for any  * , if  = 1 2 , then it wish to satisfy   the following equations  

*(q , 1 2 ,p) =  Q[*(q, 1,) *(,2 ,p)]      (2) 

a  (b c) =  (a  b) (a  c);   a (b c) = (a  b) (a c)    (3) 

Proposition 1 

The following conditions are equivalent: 

(i) l is a distributive lattice.  

(ii) For any l-VAFA, A = (Q , , , I, F), and for any p,q  Q,  1, 2 *, the Eq. (2) holds,  

i.e., *(q , 1 2 ,p) =  Q[*(q, 1,) *(,2 ,p)] 

 

The related result similar to Proposition 2.1 is also presented in [19,24], and the proofs are very similar, we omit the proof here. 
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Let us define the operations of l-valued languages (c.f. [19,21,33]): for A, B  l(*) and  l, the union A  B, the intersec-tion 

A  B, the scalar product A, the concatenation AB, the Kleene closure A* are defined as follows: for any x *, 

 

AB(x) = A(x)B(x),AB(x) = A(x)B(x), A(x) =  A(x) , AB(x) =     A(x1)B(x2):x1 x2 = x, 

A*(x) =   { A(x1)….A(xn): n0, x1……. xn = x} 

 

The following proposition claims the relationship between the associativity of concatenation operation and the distributive of 

lattice l. 

Proposition 2 

 The following statements are equivalent. 

(i) l is a distributive lattice.  

(ii) For any A,B,C  l(*), (AB)C = A(BC).  

Proof. (i) ) (ii) is obvious. Conversely, for any a, b, c  l, we want to prove the distributive law  

a (b  c) = (a b)  (a  c) holds. For r  , we take A, B, C  l(*) as follows, 

 

              b, if   x = r                               c, if x = r                               a, if x = r 

A(x) =   1,  if x = ,                 B(x) =    1, if x =                C(x)=     0, otherwise 

               0, otherwise                             0, otherwise 

 

That is, A =  +  , B =  +   and C  =  ,  Then (AB)C(rr) = AB(r)a = (A(r)B())(A()B(r))a = ((bl)(lc))a = 

a(bc), since  (AB)C(rr) =  (A(r) BC(r))(A() BC(rr)) = (ba)(lB(r) C(r)) = (ba)(ca) =  (ab)  (ac), by 

associativity law, we have (AB)C = A(BC). It follows that the distributive law a (b  c) = (a b)  (a  c) holds. 

III. DETERMINIZATION OF L-VALUED ALESHIN TYPE FINITE AUTOMATA AND EXTENDED SUBSET CONSTRUCTIONS 

First, we show that the image set of each lattice-valued regular langauge is always a finite set of l. 

Lemma [17] 

Let l be a lattice, and X a finite subset of l. Then the  -semilattice of l generated by X, written as X, is finite, the -semilattice 

of l generated by X, denoted X, is also finite, where X = {x1 ...... xk:k  1,x1, . . .,xk  X}  {1}, and X_ = {x1……. xk:k  1, 

x1, . . .,xk  X} {0}. 

Proposition 

Let A = (Q, , , I, F) be an l-VFA. Then the image set of the l-valued language recA, as a mapping from * to l, is finite; that 

is, the subset Im(recA)=  r  l : x  *, recA (x) =  of l is finite. 

Proof 

For any x = r1……rk *, observing that recA(x)  =  [I(q0 (q0, 1, q1) ….. (qk-1, k, qk)  F(qk) : q0; . . . ; qk Q] 

 

 On input x = r1…..rk  *, there are only finite accepting paths, assumed as m, causing an initial state q0  I to become a final 

state qk  F. For the i-th accepting path, we let ai0 = I(q0), ai1 = (q0, 1, q1), . . ., aik = (qk -1, k, qk) and ai,k+1 = F(qk). Then the truth 

value of recA(x) can be calculated as, recA(x)=  (a10…. a1k  a1;, +1 )…..(am0 …… amk  am,k+ 1). Let X = Im() U Im(I) U 

Im(F), then X is obviously a finite subset of l and aij  X for any 1  i  m and 0  j  k + 1. For any x  *, by the above 

observation, it follows that recA(x) (X), so Im(recA) (X). By Lemma 3.1, (X), is a finite subset of l, and thus Im(recA), as a 

subset of (X),    is also a finite subset of l.   

 

Due to Proposition, for any l-VFA, the image set of its recognizable lattice-valued language is always finite. Then we have the 

following observation: the lattice l may be infinite as a set, but for a given l-VFA A, only a finite subset of l is employed in the 

operating of A. This observation is the core in the introducing of extended subset construction in this section. 

 

The notion of nondeterminism plays a central role in the theory of computation. The nondeterministic mechanism enables a 

device to change its states in a way that is only partially determined by the current state and the input symbol. The concept of l-

VFA is obviously a generalization of nondeterministic finite automaton (NFA for short). In classical theory of automata, each 

nondeterministic finite automaton is equivalent to a deterministic one; more precisely, there exists a deterministic finite automaton 

(DFA for short) which accepts the same language as the originally given nondeterministic one does. The construction of DFA from 

an NFA is the well-known subset construction introduced by Rabin and Scott [30]. With respect to the case of l-VFA, the situation 

is more complex. In fact, as shown in [33], the subset construction does not work well for l-VFA even for an orthomodular lattice l. 

That is, for an l-VFA A, one can construct an l-valued deterministic finite automaton B, as defined in [33] using the modified 

subset construction. However, B is not necessarily equivalent to A, i.e., the equality recA = rec B does not hold in general. Some 

conditions that guarantee the equivalence between A and B are given in [33]. Therefore, it is an open problem whether an l-VFA 
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can always be determinizable. We shall show that the answer is affirmative for a general lattice l. We shall introduce subset 

construction in lattice setting which we call it the extended subset construction. First, we define the notion of deterministic l-VFA. 

Definition [19] 

An l-valued deterministic finite automaton (l-VDFA for short) is a 5-tuple A = (Q , , , q0, F), where Q,  and F are the same 

as those in an l-valued automaton, q0  Q is the initial state, and the lattice-valued transition relation  is crisp and deterministic; 

that is,  is a mapping from Q x into Q. 

Note that our definition differs from the usual definition of a deterministic finite automaton only in that the final states form an 

l-valued subset of Q. This, however, makes it possible to accept words to certain truth degrees (in the lattice setting), and thus to 

recognize lattice-valued languages. 

For an l-VDFA, A =  (Q , , , q0 F), its corresponding l-valued recognizability predicate recA  l(*) is defined as: for all x = 

r1……rn *, 

 

x  recA = def (q1  Q)……(qn  Q).(qn  F  (q0, r1) = q1 ….. (qn-1, rn) = qn) 

Write * the extension of transition relation  by putting *(q, ) = q and *(q, xr) = (*(q, x),r) for any q  Q and x *   

and r , then the truth value of the proposition x  recA is given by, recA(x)  = F(*(q0,x)). For any l-VFA, A =(Q , , , q0, 

F), we now introduce the extended subset construction an  equivalent l-VDFA, Ad = =(Qd , , , S, E) from A. 

Let X = Im() Im(I) Im(F), then X is clearly  a finite  subset of l. Let l1 = X.By lemma, l1 is a semi lattice of l generated by 

X and also finite subset of l. Choose 

Qd  = 2Qx(l1-(0))  where 2Qx(l1-(0))   denotes the set of all subsets of Qx{ l1-   0}. Then Qd   is clearly  a finite set.                            

Take S= {(q,I(q)): qQ and I(q)0}   then S Qd . The state transition  : Qd x  Qd  is defined as , for any (q,) Qx l1-  {0}   

and , 

( (q,),r) = { ( p,(q,r,p)):pQ and (q, r,p) 0   and for Z Qd} 

(Z,r) =  {(  q,), r): (q,)Z }   .  By the definition of l1 , l1 is closed under finite meet operation, for any a,b, l1 , ab  l1 , 

follows    that , for any  l1 and foe any (p,r,q)QxxQ , (p,r,q) l1 , and thus ( (q, , r) Qd for any (q,r) Qx l1-{0}.Then 

the mapping  is well defined. The l- valued final state E: Qd l  is defined  for any Z Qd  , E(Z) = v  {F(q) : (q,)Z}.  Then 

Ad is an l-VDFA. 

Theorem 

For any l-VAFA, A =  (Q, ,, I, F), the l-VDFA Ad  = (Qd, , ,S,E) constructed above is equivalent to A, i.e., recA  =  recA
d
 . 

 

Proof 

To prove that by induction on the length x of input string x that  

* (S,x) =    (qn, I(q0)( q0,r1, q1)……( qn-1, rn, ,qn)): q0,…… qnQ  and  

n =  I(q0)( q0,r1, q1)……( qn-1, rn, ,qn) 0 }    where x = r1, ……rn for n0. The result is trivial  for x =0, since x = and 

 *(S,x) =  {(q0, I(q0)): q0Q  and I(q0)0}   . 

Suppose that the hypothesis is true for inputs of length n or less. Let x = r1, ……rn+1  be a string of length n+1,  

write y = r1, ……rn,  then x =y rn+1, then 

*(S, yrn+1) = (*(S,y), yrn+1) 

By the inductive hypothesis, 

*(S, y) =  (qn, I(q0)  (q0, r1, q1) …..(qn-1, rn, qn)) : q0, . . . ,qn  Q and rn = = I(q0)  (q0, r1, q1) ……(qn-1, rn, qn) 0 

By the definition of , 

 

 (*(S,y), rn+1) = 

    ), 1

),(*),(

, 



n

ySrnqn

nnq 



=

  
),(*),(

1111 :),,(,
ySrnqn

nnnnnn qqqrq





 

 

 Q and rn (qn,n+1,qn+1)0 }={(qn+1,I(q0)(q0,1,q1)…. (qn-1,n, qn) (qn,n+1,qn+1)) : q0………. qn+1Q and rn+1 

=I(q0)(q0,1,q1)…(qn,n+1,qn+1) 0}, 

which establishes the inductive hypothesis. 

 

By the definition of l-valued final state E, for any input  =1….n  *(n0), we have 

 

recA
d() = E(*(S, ) = V{rnF(qn): (qn,rn) (*(S, )}={I(q0, ,1,q1)… (qn-1,n, qn) F(qn) : q0 ,…., qn  Q and 

I(q0)(q0,1,q1)…. (qn-1,n, qn) 0} 

 

                       =V {I(q0) )(q0,1,q1)…. (qn-1,n, qn) F(qn) : q0 ,…., qn  Q = recA(). 

 

Thus recA
d = recA A and Ad are equivalent. 
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IV. CONCLUSION AND FUTURE WORK 

The notion of lattice-valued Aleshin type finite automata was introduced in this paper. It generalized the notion of fuzzy 

automata with membership values in a distributive lattice. Some general results were obtained here. In particular, finite automata 

under quantum logic could be considered as a special case of lattice-valued finite automata with orthomodular lattice as truth values 

domain. Some results in were strengthened here. In particular, the extended subset construction of lattice valued finite automata 

was introduced, then the equivalence between lattice-valued finite automata, lattice-valued deterministic finite automata and lattice-

valued finite automata with e-moves was established. The extended subset construction and the determinization method considered 

in were compared. A simple characterization of lattice-valued languages recognized by lattice-valued finite automata was 

presented. 
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