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Abstract - Information sharing is an important functionality in cloud storage. Here, In this paper, we show how to share 

data securely, efficiently, and flexibly. A new public-key cryptosystems is demonstrated which produce cipher texts with 

constant-size such that efficient delegation of decryption rights for any set of ciphertexts are possible. The novelty is that 

one can aggregate any set of secret keys and make them as a single key, but encompassing the power of all the keys being 

aggregated. That is, the secret key holder can generate a constant-size aggregate key for flexible choices of ciphertext set in 

cloud storage, but the other encrypted files with cipher text outside the set can be secure. This compact aggregate key can 

be sent to others or be stored in a smart card with very limited secure storage. Privacy analysis of our schemes in the 

standard model and describe other application of our proposed schemes is provided. In particular, our system gives the 

first public-key patient-controlled encryption for flexible hierarchy, which was yet to be known. 

 

Index Terms - Information Security, Privacy preserving, Data Encryption, patient-controlled encryption 

________________________________________________________________________________________________________ 

I. INTRODUCTION 

We  see  the  rise  in  demand for  data outsourcing, which  assists  in the  strategic management of corporate data in Cloud 

storage, and is also  used  as  a core  technology behind many  online  services  for  personal applications. Nowadays, it is easy to 

apply for free accounts for email, photo   album, file sharing and/or  remote access,  with storage size more  than  25GB. Along 

with the current wireless technology, users can access almost  all of their  data  by a mobile  phone from any place. 

In Cloud Storage, data from  different clients  can  be hosted on  separate virtual machines (VMs)  but  reside on a single  physical 

machine. Data in a destined VM could be stolen  by  instantiating another VM co-resident with the  target  one. To know about the 

data availability, there are a series  of cryptographic schemes which  go as far as allowing a third-party auditor to  check  the  

availability of  files  on  behalf   of  the  data   owner  without  leaking anything about  the  data. Likewise,  cloud  users probably 

will  not  hold  the  strong belief  that  the  cloud server  is doing  a good  job in terms  of confidentiality. A cryptographic solution,  

with  proven security re- lied on number-theoretic assumptions is more  desirable, whenever the  user  is not  perfectly happy with  

trusting the  security of the  VM or  the  honesty of the  technical staff.  These users  are  motivated to  encrypt their  data with  

their own keys before uploading them  to the server. 

Let us consider an example of data sharing through dropbox. We consider that   Alice keeps all her private  photos  on Dropbox, 

and  she does not want  to expose  her photos to everyone. Due to various data  leakage  possibility Alice cannot  feel relieved by 

just relying  on the privacy protec- tion  mechanisms provided by Dropbox, so she encrypts all the photos using  her own keys 

before uploading. One day,  Alice’s  friend,   Bob,  asks  her  to  share  the  photos taken  over  all these  years  which  Bob 

appeared in. Alice can  then   use  the  share   function of  Dropbox,  but  the problem here  is  how  to  delegate the  decryption  

rights for  these  photos to  Bob.  An option that Alice  has  is to securely send  Bob the secret  keys involved. Generally, there  are 

two  ways  for her under the traditional encryption paradigm 

•  Alice encrypts all files with  a single  encryption key and  gives Bob the corresponding secret key directly. 

•  Alice encrypts files with  distinct keys and sends  Bob the  corresponding secret  keys. 

Clearly, the  first  method is inadequate since  all  un- chosen  data  may  be also  leaked  to Bob. For other one, there  are  

practical concerns on  efficiency.  We should have separate key for every photo, say, a thousand. Transferring these  secret keys  

inherently requires a  secure  channel, and  storing these  keys requires rather expensive secure  storage. The costs and  

complexities for these generally increase  with the number of the decryption keys to be shared. In other words, it is very 

expensive. 

Encryption keys  also  come  with  two  flavors  — sym- metric  key or asymmetric (public)  key. Using  symmetric encryption, 

when  Alice wants the  data  to be originated from  a  third   party,   she  has  to  give  the  encryptor her secret  key;  obviously, 

this  is  not  always desirable. By contrast, the encryption key and  decryption key are different in public-key encryption. The use 

of public-key encryption gives more flexibility for our applications. For example, in enterprise settings, every  employee can up- 

load  encrypted data  on the cloud  storage server  without the  knowledge of the  company’s master-secret key. 

The best available solution for this problem is that  Alice  encrypts files  with  distinct public-keys, but only  sends  Bob a single  

(constant-size) decryption key. Since  the  decryption key  should be  sent  via  a  secure channel and  kept  secret,  small  key  size  

is  always desirable.   Example, we  can  not  expect  large  storage for  decryption keys  in  the  resource-constraint  devices like 

smart  phones, smart  cards  or wireless sensor  nodes. Especially, these  secret  keys  are  usually stored in  the tamper-proof 

memory, which  is relatively expensive. The present  research  efforts   mainly  focus   on  minimizing the  communication 

requirements. 
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II. INFORMATION ENCRYPTION 

Framework 

Mainly, a key-aggregate encryption scheme has of five polynomial-time algorithms as follows. The data owner establishes the 

public system parameter via Setup and generates a public/master-secret3 key pair via KeyGen. Messages can be encrypted via 

Encrypt by anyone who also decides what ciphertext class is associated with the plaintext message to be encrypted. Master secrete 

can be used by the data owner to generate an aggregate decryption key for a set of ciphertext classes. The generated keys can be 

passed to delegatees securely (via secure e-mails or secure devices) Finally, any user with an aggregate key can decrypt any 

ciphertext provided that the ciphertext’s class is contained in the aggregate key via Decrypt mechanism. 

 Setup(1λ , n): executed by the data  owner to setup  an account on an untrusted  server.  On input a security level  

parameter 1λ  and  the  number of  ciphertext classes   n  (i.e.,  class  index   should  be  an  integer bounded by 1 and  n), 

it outputs the  public  system parameter param,  which  is omitted from  the  input of the  other  algorithms for brevity. 

 KeyGen: executed by  the  data  owner to  randomly generate a public/master-secret key pair  (pk, msk). 

 Encrypt(pk, i, m): executed by anyone who  wants to encrypt data.  On  input a public-key pk, an  index  i denoting the  

ciphertext class,  and  a message m,  it outputs a ciphertext C. 

 Extract(msk, S): executed by the data  owner for del- egating the decrypting power for a certain  set of ci- phertext 

classes to a delegatee. On input the master- secret  key msk and  a set S of indices  corresponding to different classes,  it 

outputs the aggregate key for set S denoted by KS . 

 Decrypt(KS , S, i, C):  executed  by  a   delegatee who received an aggregate key KS  generated by Extract. On  input KS 

, the  set  S, an  index  i  denoting the ciphertext class  the  ciphertext C belongs  to, and  C, it outputs the  decrypted 

result  m if i ∈ S. 

 

Encrypted Information Sharing 

An application  of  KAC is  data   sharing.The schemes enable  a content provider to share  her  data  in a confidential and  

selective  way,  with  a fixed and  small ciphertext expansion, by distributing to each authorized user  a single  and  small  

aggregate key. Here  we  describe the  main  idea  of  data   sharing in cloud storage using  KAC, illustrated in Figure 2. Suppose 

Alice  wants to  share   her  data   m1 , m2 , . . . , mν   on  the server.  She first  performs Setup(1λ , n)  to get  param and execute  

KeyGen to get the  public/master-secret key pair (pk, msk).  The  system parameter param and  public-key pk can be made  

public  and  master-secret key msk should be kept  secret by Alice. Anyone (including Alice herself) can then  encrypt each mi 

by Ci  = Encrypt(pk, i, mi ). Finally, the encrypted data are sent to server. 

With  param and  pk, people who  cooperate with  Alice can  update Alice’s  data   on  the  server.   Once  Alice  is willing  to 

share  a set  S of her  data  with  a friend  Bob, she   can  compute  the   aggregate  key  KS   for  Bob  by performing 

Extract(msk, S). Since KS  is just  a constant size key, it is easy  to be sent  to Bob via a secure  e-mail. 

After getting the  aggregate key, Bob can download the data that he has access with. That is, for each i ∈ S, Bob downloads Ci  

(and  some  needed values  in param) from  the  server.   With  the  aggregate key  KS , Bob  can decrypt each  Ci  by 

Decrypt(KS , S, i, Ci ) for each  i ∈ S. 

III. RELATED WORK 

Here we compare our basic KAC scheme with other possible solutions on sharing in secure cloud storage. We summarize our 

comparisons in Table 1. 

Cryptographic Keys  

Here we discuss the most relevant study in the cryptography/security. Cryptographic key assignment schemes aim to reduce the 

expense in storing and managing secret keys for general cryptographic use. Utilizing a tree structure, a key for a given branch can 

be used to derive the keys of its descendant nodes. Just granting the parent key implicitly grants all the keys of its descendant 

nodes.. The concept can be generalized from a tree to a graph. More advanced cryptographic key assignment schemes support 

access policy that can be modeled by an acyclic graph or a cyclic graph. Most of these schemes produce keys for symmetric-key 

cryptosystems, even though the key derivations may require modular arithmetic as used in public-key cryptosystems, which are 

generally more expensive than “symmetric-key operations” such as pseudorandom function. 

 
Figure 2 
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Consider the below figure3, Each node in the tree represents a secret key, while the leaf nodes represents the keys for individual 

ciphertext classes. Filled circles represent the keys for the classes to be delegated and circles circumvented by dotted lines 

represent the keys to be granted. Note that every key of the non-leaf node can derive the keys of its descendant nodes. 

 
Fig. 3a 

 

Table I : Comparisons between our basic  KAC scheme and other related schemes 

 Decryption key size Ciphertext 

size 

Encryption type 

Key assignment schemes for a 

predefined hierarchy (e.g., [7]) 

most  likely  non-

constant (depends on the  

hierarchy) 

constant symmetric or public-

key 

Symmetric-key encryption with  Compact Key 

(e.g., [8]) 

constant constant symmetric-key 

IBE with  Compact Key (e.g., [9]) constant non-constant public-key 

Attribute-Based Encryption (e.g., [10]) non-constant constant public-key 

KAC constant constant public-key 

 
Fig 3b 

Fig. 3. Compact key is not always possible for a fixed Hierarchy 

 

In Figure 3(a), if Alice wants to share all the files in the “personal” category, she only needs to grant the key for the node 

“personal”, which automatically grants the delegatee the keys of all the descendant nodes (“photo”, “music”). This is the ideal 

case, where most classes to be shared belong to the same branch and thus a parent key of them is sufficient But in general cases, it 

is difficult. As shown in Figure 3(b), if Alice shares her demo music at work (“work”!“casual”!“demo” and 

“work”!“confidential”!“demo”) with a colleague who also has the rights to see some of her personal data, what she can do is to 

give more keys, which leads to an increase in the total key size. One can see that this approach is not flexible when the 

classifications are more complex and she wants to share different sets of files to different people. For this delegatee, the number 

of granted secret keys becomes the same as the number of classes. 

 

Compact Key in Symmetric-Key Encryption 

Benaloh  et al. presented an encryption scheme  which  is originally proposed for concisely  transmitting large  number of  keys  in  

broadcast scenario  [18]. The construction is simple  and  we briefly review   its  key  derivation process   here  for  a  concrete 

description of what  are the desirable properties we want to achieve.  The derivation of the key for a set of classes (which  is a  

subset  of all  possible  ciphertext classes)  is as  follows.  A  composite modulus N  = p · q is chosen where p and  q are two  large  

random primes. A master secret  key  Y   is chosen  at  random from  Z∗ . Each  class is associated with  a  distinct prime ei . All  

these  prime numbers can  be  put   in  the  public   system parameter A  constant-size key  for  set  S0  can  be  generated. As a 

concrete  example, a key for classes  represented by e1 , e2 , e3   can be generated as Y(1/e1.e2.e3) from which, Y1/e1, Y1/e2, 

Y1/e3 can be easily derived. 
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 This  approach achieves similar  properties and performances as  our  schemes.  However, it is designed for the symmetric-key 

setting  instead. The encryptor needs to  get  the  corresponding secret  keys  to  encrypt data, which  is not  suitable for many  

applications. Since their method is used  to generate a secret  value  rather than  a pair of public/secret keys, it is unclear how to 

apply this idea  for public-key encryption scheme. 

 

IV. CONCRETE CONSTRUCTIONS  OF CRYPTOSYSTEM 

Let G and GT be two Cyclic groups of prime order p and e:G xG → GT be a map with the following properties. 

 

 

 
G is a bilinear group if all the options involved abouve are efficiently computable.. many  classes of elliptic curves feature 

billinear groups. 

 

Basic Construction 

Although some scheme supports constant-size secret keys, every key only has the power for decrypting ciphertexts associated to a 

particular index. We thus need to devise a new Extract algorithm and the corresponding Decrypt algorithm. 

 

 Setup(1λ, n): Randomly pick a bilinear group G of 

prime order p where 2λ ≤ p ≤ 2λ +1, a generator 1, . . . . n, n=2, . . . 

,2n. Output the system parameter 

as  param = ( g, g1,. . ., gn; gn+2, . . . , g2n) ( a  can be 

safely deleted after Setup). 

 KeyGen(): Pick  output the public and 

aster-secret key pair:  

 Encrypt(pk; i;m): For a message  and an index randomly pick 

and compute the cipher text      

  for the set S of indices j’s, the aggregate key is computed as 

since S does not include can always be retrieved from param. 

 
For correctness, we can see that 

 

 
 

 

Extension  Of Public-Key  

If a user needs to classify his ciphertexts into more than n classes, he can register for additional key pairs (pk2; msk2), . . , (pkl`; 

mskl`). Each class now is indexed by a 2-level index in and the number of 

classes is increased by n for each added key. 
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 Figure 4. Figure 4 shows the flexibility of our approach. We achieve “local aggregation”, which means the secret keys 

under the same branch can always be aggregated. We use a quaternary tree for the last level just for better illustration of our 

distinctive feature. Our advantage is still preserved when compared with quaternary trees in hierarchical approach, in which the 

latter either delegates the decryption power for all 4 classes (if the key for their parent class is delegated) or the number of keys 

will be the same as the number of classes. For our approach, at most 2 aggregate keys are needed in our example. 

 
 

 Setup and KeyGen: Same as the basic construction 

 Extend(pkl; mskl): Execute KeyGen() to get  output the  public and 

extended master-secrete keys as  

 
Just like the basic construction, the decryption can be done more efficiently with the knowledge of i’s.  

Correctness is not much more difficult to see: 

 

 

V. ANALYSING PERFORMANCE 

Compression Factors 

We consider, that there are exactly 2h ciphertext classes, and the delegatee of concern is entitled to a portion r of them. That is, r 

is the delegation ratio, the ratio of the delegated ciphertext classes to the total classes. Obviously, if r = 0, na should also be 0, 

which means no access to any of the classes; if r = 100%, na should be as low as 1, which means that the possession of only the 

root key in the hierarchy can grant the access to all the 2h classes. Consequently, one may expect that na may first increase with r, 

and may decrease later. We set r = 10%; 20%, . . . ,90%, and choose the portion in a random manner to model an arbitrary 
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“delegation pattern” for different delegatees. For each combination of r and h, we randomly generate 104 different combinations 

of classes to be delegated, and the output key set size na is the average over random delegations. 

 We tabulate the results in Table 2, where h = 16; 18; 20 respectively. For a given h, na increases with the delegation 

ratio r until r reaches ~ 70%. An amazing fact is that, the ratio of na to N(= 2h+1 -  1), the total number of keys in the hierarchy 

(e.g., N = 15 in Figure 3), appears to be only determined by r but irrelevant of h. This is because when the number of ciphertext 

classes (2h) is large and the delegation ratio (r) is fixed, this kind of random delegation achieves roughly the same key assignment 

ratios (na=N). Thus, for the same r, na grows exponentially with h. We can easily estimate how many keys we need to assign 

when we are given r and h. 

 The average number of delegated classes that each granted key can decrypt. Specifically, it is the ratio of the total 

number of delegated classes (r2h) to the number of granted keys required (na). Certainly, higher compression factor is preferable 

because it means each granted key can decrypt more ciphertexts. Figure 5(a) illustrates the relationship between the compression 

factor and the delegation ratio. Somewhat surprisingly, we found that F = 3:2 even for delegation ratio of r = 0:9, and F < 6 for r = 

0:95, which deviates from the intuition that only a small number of “powerful” keys are needed for delegating most of the classes. 

We can only get a high (but still small) compression factor when the delegation ratio is close to 1 and a comparison of the number 

of granted keys between three methods is depicted in Figure 5(b). 

 

 

 
 

VI. CONTROLLED ENCRYPTION- NEW PATIENT 

Motivated by the nationwide effort to computerize America’s medical records, the concept of patientcontrolled encryption (PCE) 

has been studied. In PCE, the health record is decomposed into a hierarchical representation based on the use of different 

ontologies, and patients are the parties who generate and store secret keys. When there is a need for a healthcare personnel to 

access part of the record, a patient will release the secret key for the concerned part of the record. In the work of Benaloh et al. 

[8], three solutions have been provided, which are symmetric-key PCE for fixed hierarchy (the “folklore” tree-based method in 

Section 3.1), public-key PCE for fixed hierarchy (the IBE analog of the folklore method, as mentioned in Section 3.1), and RSA-

based symmetric-key PCE for “flexible hierarchy” (which is the “set membership” access policy as we explained). 

Our work provides a candidate solution for the missing piece, public-key PCE for flexible hierarchy, which the existence of an 

efficient construction was an open question. Any patient can either define her own hierarchy according to her need, or follow the 

set of categories suggested by the electronic medical record system she is using, such as “clinic visits”, “x-rays”, “allergies”, 

“medications” and so on. When the patient wishes to give access rights to her doctor, she can choose any subset of these 

categories and issue a single key,  
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from which keys for all these categories can be computed. Thus, we can essentially use any hierarchy we choose, which is 

especially useful when the hierarchy can be complex. Finally, one healthcare personnel deals with many patients and the patient 

record is possible stored in cloud storage due to its huge size (e.g., high resolution medical imaging employing x-ray), compact 

key size and easy key management are of paramount importance. 

VII. CONCLUSION 

How to protect users’ data privacy is a central question of cloud storage. With more mathematical tools, cryptographic schemes 

are getting more versatile and often involve multiple keys for a single application. In this article, we consider how to “compress” 

secret keys in public-key cryptosystems which support delegation of secret keys for different ciphertext classes in cloud storage. 

No matter which one among the power set of classes, the delegatee can always get an aggregate key of constant size. Our 

approach is more flexible than hierarchical key assignment which can only save spaces if all key-holders share a similar set of 

privileges. 
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