Simulation of Bucket body of Bucket Wheel Stacker Reclaimer

Ankur Patel
Faculty of Mechanical Engineering, Babaria Institute of Engineering, Varnama, Vadodara, India

Abstract - In bucket wheel stacker reclaimer, the reclaiming process is used to reclaim the material with the help of bucket. So the amount reclaiming material is mainly dependent on capacity of the bucket. Moreover, the capacity (volume) of the bucket is concern to reclaim the material. In this paper, parametric model of bucket is made so we can change the bucket dimension to different capacity of bucket and use bucket to simulate the same. In the simulation, analyze the bucket body against the normal and tangential digging resistance acts on the blade during reclaiming process. The model made in Pro-E and simulated in Ansys 14 Workbench. The result is verified with yield strength of the material. Digging analysis is performed in static condition.

Keywords - Bucket wheel stacker reclaimer, Bucket body, Normal & Tangential digging resistance of bucket, Pro-E and Ansys

I. INTRODUCTION

Bucket wheel stacker reclaimer is a kind of machine to transport the bulk solids materials in the stockpile yard. The stockpile yard is a place to store some bulk solids materials like coal, iron ore, limestone etc. Most of the machine are used in port, power plant, steel plant, and cement mill and so on. There are many of the machines are used in the world. For reclaiming purpose, buckets are used. A bucket is a specialized container attached to a machine. It is a bulk material handling component. The bucket has an inner volume as compared to other types of machine attachments like blades or shovels.

II. MODELING OF BUCKET BODY

Bucket body is made of plates, blades and teeth. Bucket body attached to the bucket wheel. For extra stiffness the stiffeners are attached at the base where the bucket is mounted with bucket wheel. For restriction degree of freedom from the front side lugs are used. Bucket is a part which is undergone through stresses so structural steel has been selected due to its ductility as a manufacturing material (2). The capacity of the bucket is 1,350 cu m. This bill of material and dimensions are found by using standard data book. Parametric model of the bucket is made by considering the main variable. The main variable is height of the bucket and the length of the bucket, dimensions are as given below.

Height of the bucket – 1457 mm
Length of the bucket – 1501 mm

III. STATIC ANALYSIS OF THE BUCKET BODY

Assumptions for Analysis of the bucket body

- The material of the bucket body is perfectly homogeneous (i.e. of the same material throughout) and isotropic (i.e. of equal elastic properties in all directions).
- Load conditions are assumed to be constant throughout the operational life.
- Assumed welding efficiency equal to parent material.
Table No.1 Material of construction

<table>
<thead>
<tr>
<th>Sr No.</th>
<th>Component</th>
<th>Material</th>
<th>Yield Strength In Mpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plate & Blade</td>
<td>ST-42</td>
<td>250</td>
</tr>
</tbody>
</table>

IV. NORMAL DIGGING RESISTANCE

Speaking of bucket wheel excavators, the force characteristics mean the forces which act on the bucket and the wheel. The forces which act on the bucket are: the cutting force (digging) F_x which acts according to the tangency of the trajectory of the bucket; the penetration force F which acts according to the normal of the trajectory of the bucket; the lateral force F_z which acts according to the binormal of the trajectory of the bucket [29, 30].

The cutting force F_x will be determined with the following equation: - in the main vertical plane ($\theta = 0$)

$$F_x = k_{uz} Ke Stm N$$ 4.1

Where: Ke represents the specific resistance of the reclaiming material to the cutting force, i.e. N/cm^2;

Stm – is the average surface of the transversal section of the chip, i.e. cm^2;

θ – is the positioning angle of the bucket in relation to the axis of the main cutting vertical plane, i.e. rad;

k_{uz} - represents the coefficient regarding the wear of teeth and cutting wedge of the bucket (kuz = 1 for new tooth, kuz= 1.2…1.5 for average worn teeth, kuz ≥ 2 for much worn teeth, kuz being determined experimentally for each case) [18].

The value of the force F_x is constant for $\theta \leq \theta_L$ and decreases if $\theta \geq \theta_L$, becoming $F_x=0$ for $\theta=90^o$, where θ_L is the limited pivoting angle.

For starting reclaiming of the material,

Specific resistance of the excavated material $Ke= 60 N/cm^2$. [18, 30] Coefficient regarding the wear of teeth and cutting wedge of the bucket $Kuz = 1$ for new tooth

Assuming Average surface of the transversal section of the chip $Stm= 0.1 m^2$

$$F_x = k_{uz} Ke Stm$$

Therefore,

$$F_x = 60 * 1 * 1000 = 60000 N$$

The total load of the 60000 N during reclaiming is applied on surfaces as remote force. The load and constrains are given as shown in figure 22. Also, the Von-Mises stress and deformation due to this loading condition is given in figure 23 and figure 24 respectively.
V. NORMAL LATERAL RESISTANCE

The normal lateral resistance can be assumed to be 0.3 times of the normal digging resistance [28, 31].

Normal lateral resistance = 0.3 x 60000 = 18000 N

The total load of the 18000 N during reclaiming is divided into two different surfaces as remote force which is 9000 N at side plate. The load and constrains are given as shown in figure 28. Also, the Von-Mises stress and deformation due to this loading condition is given in figure 29 and figure 30 respectively.

VI. RESULT

<table>
<thead>
<tr>
<th>Sr no.</th>
<th>Load Case</th>
<th>Allowable Direct Stress in Mpa</th>
<th>Max Von-Mises Stress in Mpa</th>
<th>Deformation In mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal digging resistance</td>
<td>166.7</td>
<td>132.95</td>
<td>0.361</td>
</tr>
<tr>
<td>2</td>
<td>Normal lateral resistance</td>
<td>166.7</td>
<td>11.159</td>
<td>0.037</td>
</tr>
</tbody>
</table>

VII. CONCLUSION

The capacity of the bucket is the maximum Von-Mises stress is equal to 132.95 MPa and maximum deformation is equal to 0.361 mm achieved later are within the permissible limits. Above analysis shows that the maximum stress developed in the bucket body are less than the ultimate stress of the material. So, the above design is said to be safe. The deflection is also under the range. This is also advantageous because modifications are possible and can be designed with better strength, with minimum stresses and deformation. Due to these the manufacturing cost can be optimize and best efficient model can be generated.

VIII. ACKNOWLEDGEMENT

This work has been the most practical and exciting part of my learning experience, which would be an asset for me in my future career. This paper is the result of work whereby I have been accompanied and supported by many people. It is a pleasant aspect that I have now the opportunity to express my gratitude for all of them. It is a great pleasure for me to express my thanks and heartiest gratitude to all those who have helped me during the development of this work.

My most sincere thanks to Professor Mr. V.J.Patel and P.M.Agrawal (Professor of Mechanical Engineering Department) for this kind of co-operation and who has always been guiding, encoiring and motivating me throughout the work with his experience.
and knowledge, while preparing this work. I am also greatly thankful to the entire Mechanical Department Staff who have helped me in the completion of this work directly or indirectly. There is no doubt that in spite of my best efforts, some errors might remain. I will be grateful, if they could communicate to me any errors they discovered.

REFERENCES

