
Optimal Scheduling Algorithms on multiprocessors: A comparative study| ISSN: 2321-9939

IJEDR1303060
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

Website: www.ijedr.org | Email ID: editor@ijedr.org
298

Optimal Scheduling Algorithms on multiprocessors:

A comparative study

1
Shreya Maolanker,

2
Prof. Padmini G. Kaushik,

3
Nidhi Thakur

Department of Electronics & Telecommunication Engineering

Jawaharlal Darda Institute of Engineering & Technology, Yavatmal, India
1
168.shreya@gmail.com,

2
padmini.jp@gmail.com,

3
nidhithakur114@gmail.com

Abstract - Multicore hardware systems are proving to be more efficient each passing day and so are the scheduling algorithms for these

systems. The potential speedup of applications has motivated the widespread use of multiprocessors in recent years. Optimal

multiprocessor scheduling algorithms remain a challenge to the researchers. Out of the number of algorithms proposed and analyzed

we here compare and examine three of them: the classic global EDF, the optimal P-fair algorithm and a newer LLREF which has

worked upon the strengths of P-fair. They are compared in terms of task migrations and required number of scheduler invocations and

schedulability of a variety of tasks. Results are verified on the basis of a set of randomly generated tasks.

Index terms- scheduling algorithms, schedulability, global EDF,PF,LLREF

I. INTRODUCTION

Real-time systems are preliminarily the result of basic but complex user requirements, fundamentally defined by correctness

of the systems, timeliness, accuracy, simultaneity and a high degree of predictability. Thus a scheduling algorithm becomes an

indispensable part of such systems. It involves the allocation of resources and time to tasks in such a way that most of the

performance requirements are met. Use of multiprocessors has increased dramatically due to reduced heat and thermal

dissipation. However optimal scheduling algorithms developed for uniprocessor systems did not work satisfactorily for

multiprocessors. Scheduling real time tasks consists of two sub problems: task allocation to processors and scheduling tasks on

individual processors. Furthermore, there are additional sources of overhead to consider: migrating task overhead and overheads

due to scheduler invocations. In this paper, we will examine three scheduling algorithms for uniform multiprocessor systems viz.

global EDF, PF and LLREF. We then implement these algorithms in RTSIM, an open-source simulator. Finally, there is a

comparative study on the basis of schedulability as well as the number of scheduler invocations and task migrations for each of

these algorithms.

II. SCHEDULING ALGORITHMS

A. Global EDF

The Earliest Deadline First (EDF) is one of the oldest scheduling algorithms first described by Liu and Layland[5].Each

instance of a task is assigned a priority on the basis of its absolute deadline. Earlier the deadline, higher will be the priority. The

algorithm is optimal for uniprocessors when it is used to schedule jobs on a processor as long as preemption is allowed and jobs

do not contend for resources. Global EDF is the extension of EDF for multiple processors. Similar to EDF, the jobs are ordered by

earliest absolute deadline, but the P highest priority processes are executed by the P processors in every time step. Scheduling

events occur only when new jobs are introduced or when a job completes.

The likelihood of migrations in global EDF depends first on how often preemptions happen. Migrations can only occur due to

unfavorable scheduling events e.g. on the occurrence of sporadic tasks etc. The introduction of a new job causes only active to

idle transition i.e. if a higher priority job is introduced then the state of a lowest priority job changes from active to idle. Job

completion causes only idle to active transitions. If a job has completed, the highest priority job is chosen to execute, regardless of

what CPU the job may have been executing on previously. If a job’s execution state has an active to idle to active sequence, it is

possible for the job to migrate between CPUs. This means that global task migration is allowed thus the name global EDF.

The other factor in the likelihood of migrations in global EDF is the number of CPUs. If a preempted task is not migrated it

definitely means that the task has been completed before other active jobs. Suppose completion time is uniformly random. If

utilization is greater than P, it is obviously not schedulable. A simple bound is

 ∑

 P – max{

 } (P-1)

Take for example a set of tasks that barely fit the bound. Let P = 4 and Ti = (1, 2) for i є [1, 5].The condition above evaluates to

 .

 .If any task was longer, they might not fit, as can be seen in Figure 1.

B. PF

mailto:1168.shreya@gmail.com
mailto:2padmini.jp@gmail.com
mailto:3nidhithakur114@gmail.com

Optimal Scheduling Algorithms on multiprocessors: A comparative study| ISSN: 2321-9939

IJEDR1303060
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

Website: www.ijedr.org | Email ID: editor@ijedr.org
299

In this algorithm all tasks are independent of each other; there is no sharing of resources besides the processors. It does not

take into the account the overhead of migrating tasks when scheduling tasks and assumes that the tasks are periodic and the

deadlines of the tasks equal the periods.

The PF algorithm, presented in [2, 3], is optimal for scheduling periodic tasks on multiple processors thus improving on global

EDF because global EDF is not optimal. This may be derived from the weighted round robin scheduling algorithm for

uniprocessors where the tasks were given resources in the ratio of their priority.PF uses a “time-slicing” approach, i.e. it splits up

tasks into unit intervals of execution, termed “slots”, or ticks. PF uses this approach to approximate a “fluid scheduling”, or

constant rate scheduling. [6].

Fig 1 Global Schedule of five identical tasks with utilization1/2.

The basic idea of the PF algorithm is to assign slots to each task such that it is always scheduled proportionally to the

utilization of the task. That is, if a task has a utilization of U, then if seen at any particular time slot t, the task will have been

allotted U ・ t time slots for execution between 0 and t. The authors of [2, 3] define any schedule that satisfies this requirement as

proportionately fair or P-fair. P-fair will meet all the deadlines for its tasks. The goal of the PF algorithm is to maintain the P-fair

requirement for all tasks. If at all the value U ・ t is not an integer, then ceiling or floor function is used.

PF maintains a measure of how close the current schedule is to meeting the P-fair requirement. The authors of [2, 3] define a

lag function at time t for a task T0 with utilization U0 as follows:

lag(, , t) = ・ t − S()

where S() is the number of slots allocated to thus far.

PF also makes use of a “characteristic string” that describes the resource requirements for each task at each slot. The

characteristic string can be calculated offline, and it is used to make optimal decisions about the future demands of tasks on each

iteration of the algorithm. The authors of [2, 3] define the characteristic string for a task T0 with utilization at time t over the

characters (+, 0,−) as follows:

c(, , t) = sign((t + 1) − └U0 ・ t┘ − 1).

With the lag computation and the characteristic string in hand, PF classifies each task at a time t in the given way. A task is

classified as non-urgent if the lag for the task is strictly less than 0 and the characteristic string at the slot for t is either − or 0. A

task is classified as urgent if the lag for the task is strictly greater than 0 and the characteristic string at the slot for t is either + or

0. A task that is neither non-urgent nor urgent is classified as contending. An invariant that falls out of this classification is that at

every slot t, all urgent tasks must be scheduled and all non-urgent tasks must not be scheduled. If either of these conditions cannot

be met, then the task set cannot be feasibly scheduled using PF or any other algorithm, given that PF is optimal.

The order of contending tasks is defined lexicographically according to the characteristic string of each task. Specifically, the

ordering is + 0 −. Additionally, when comparing the characteristic strings of two contending tasks at a particular slot t, only the

subset of the characters from slot t to the first slot where the value of characteristic string becomes 0 must be compared. For

example, let the characteristic string of a task be “− + − 0 − + + 0”. When this task is classified as contending, only the sub string

“− + − 0” is considered to order the task relative to the other contending tasks.

The mechanics of the PF algorithm are best explained with a simple example. The example, described in Figure 2 , uses PF to

schedule three identical tasks on two processors;

Fig 2 Schedule for PF example

Optimal Scheduling Algorithms on multiprocessors: A comparative study| ISSN: 2321-9939

IJEDR1303060
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

Website: www.ijedr.org | Email ID: editor@ijedr.org
300

Each task has a period of 3, a worst-case execution time of 2, and an initiation time of 0. Additionally, the characteristic string

is the same for all three tasks, namely “− + 0 − +0...”. It is important to note that this task set is infeasible with global EDF, but

can be scheduled by PF.

If by chance the characteristic strings of a set of contending tasks are equal, the ties can be broken arbitrarily without affecting the

fairness.

C. LLREF

The LLREF scheduling algorithm [5] assumes that tasks are preemptible and independent (i.e. that they have no shared

resources). The cost of context switches and task migration is ignored and assumed to be negligible. The deadline is assumed to

be equal to the period.

Like PF, LLREF approximates a fluid scheduling model. In the fluid scheduling model, each task executes at a constant rate at

all times as opposed to a practical schedule. In order to reduce the number of scheduler invocations LLREF only schedules on a

small set of events. It makes use of an abstraction called the Time and Local Execution Time Domain Plane (T-L Plane). The

entire scheduling time is composed of T-L plane of different sizes such that feasible scheduling in a single T-L plane implies

feasible scheduling over all times. This abstraction is used to determine when tasks must be scheduled in order to meet their

deadlines. Figure 3 shows an example T-L Plane, where the x-axis is time and y-axis is the remaining execution time for a

particular task.

For every two subsequent primary scheduling events, or task arrivals, right-angled triangular T-L Planes are formed where one

edge is the first scheduling event, one is the diagonal of no remaining local laxity, and the third is the horizontal at the y-value

where the fluid schedule intersects the next task arrival. The line of no local laxity has a slope of -1. All T-L Planes for each time

interval are superimposed, and then the algorithm is performed on each of these T-L Planes. If there is a locally feasible schedule

for each plane, then all tasks can be scheduled. When scheduling locally, only the current plane is considered. On primary

scheduling events, a new T-L Plane is constructed, and all tasks are rescheduled according to it. Tokens represent the execution of

tasks over time. If the task is selected, it will move to the right with a slope of -1 (e.g., t1 in Figure 3), and if it is not selected, it

will move with a slope of 0 or horizontally (e.g., t0 in Figure 3).

Fig 3 T-LPlane

Unlike PF, where scheduling occurs at each tick, in LLREF scheduling only happens either at primary or secondary

scheduling events. There are two instances where secondary scheduling events can occur: when a task reaches the base of the

triangle (a bottom-hitting event), and when a task hits the hypotenuse of the right angled triangle (a ceiling-hitting event). A

bottom-hitting event indicates that the task has executed as much as it needs to for the local T-L Plane, so it should be deselected

and another task should be run instead. A ceiling-hitting event indicates that the task has zero remaining local laxity, and therefore

needs to be selected immediately to meet the deadline.

III. RESULTS

To evaluate and compare the algorithms, we implemented global EDF, PF, and LLREF using the RTSIM framework [8], an

open-source library for simulating real-time scheduling algorithms. RTSIM builds on the simulation framework MetaSim [8],

which presents a general interface to a prioritized event queue. Under RTSIM, a simulation is divided into ticks.

A. Evaluation Methodology

We empirically evaluated global EDF, LLREF and PF by randomly generating sets of tasks and extracting three parameters

from the schedules generated by each of the algorithms. The first parameter evaluated the ability of the algorithm to feasibly

schedule a given set of tasks. To measure schedulability, we generated task sets with a utilization less than the number of

processors. This guaranteed that both LLREF and PF would be able to schedule the task sets. However, since global EDF is non-

optimal, there is no guarantee that global EDF would be able to schedule these task sets[2]. Whenever a task set could not be

scheduled by global EDF, this infeasibility was recorded.

Optimal Scheduling Algorithms on multiprocessors: A comparative study| ISSN: 2321-9939

IJEDR1303060
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

Website: www.ijedr.org | Email ID: editor@ijedr.org
301

The second parameter measures the total number of task migrations made by a specific schedule for a set of tasks. The third

measures the total number of scheduler invocations required to produce the final schedule. The task migrations and scheduler

invocations characterize the overhead of each algorithm. These parameters are ways to characterize the overhead of scheduling

algorithms.

In our simulations, a task migration occurs when a task instance is descheduled from one processor and is later rescheduled on

a different processor. For each algorithm, scheduler invocations occur at different times. For global EDF, the scheduler was

invoked on every arrival of a task instance and on every completion of a task instance. At these points, global EDF makes

decisions on the next task subset to schedule based on the absolute deadlines. For LLREF, there are both primary and secondary

scheduling events. For PF, the scheduler is invoked every clock tick; this means the number of scheduler invocations for PF is

equal to the number of clock ticks in the simulation of a specific task set.

B. Task Set Generation

The idea behind the algorithm used to generate the task sets is to iteratively add tasks with a random period and worst-case

execution time until the utilization exceeds the total number of processors. The task that pushed the utilization over the bound is

then removed to get the final task set.

We generated 1100 task sets for each combination of these parameters, resulting in 13200 task sets. We input each of these

task sets into RTSIM and invoked each of the three algorithms to create schedules for these tasks.

IV. DISCUSSION

A. Schedulability

Global EDF is far simpler than PF and LLREF, but it pays for it in schedulability. Where PF and LLREF are optimal, global

EDF can only make loose guarantees. In all cases, increasing the CPU count increases the utilization level where missed deadlines

may occur. However, normalizing these values shows that the system utilization does not necessarily increase with the CPUs.

B. Scheduler Invocations

Scheduler invocations are a source of overhead, and in a real time system, time spent scheduling reduces the time available to

run the tasks. Even in cases where the scheduler can be run offline, a higher number of scheduler invocations will lengthen the

time required to find a feasible schedule. For this reason, it is desirable to minimize the number of times the scheduler is invoked.

In PF, the scheduler is invoked at every tick. Since LLREF is designed to improve on PF by minimizing the number of scheduler

invocations, it only schedules on primary or secondary events. Therefore, if primary events occur on a relatively high percentage

of ticks, the number of invocations will be similar to PF. This will occur if tasks have short periods, as LLREF must schedule on

all primary events.

As the number of processors increases, the distributions of the difference between LLREF and PF remain fairly consistent.

The exception to this is that the spike at 0 increases in size with number of processors. The reason for this is that when the tests

are run for more processors, the task sets contain more tasks. The probability that one of these tasks will have a short period, and

thus lead to a large number of scheduler invocations, is then higher. This may not be the case in real systems. In addition, as the

number of tasks increases, the likelihood that any particular tick will be a multiple of one of the task periods increases, leading to

more invocations in general. Since PF already is invoked in every time step, this only affects LLREF.

Global EDF has the fewest scheduler invocations; they only occur when a task arrives or completes. This is a subset of the

invocations in LLREF, since LLREF considers task arrivals as primary events, and local task completion is only one of the

possible secondary scheduling events. However, the trade-off there is that LLREF can schedule sets of tasks which are not

feasible using global EDF. Our results show that, as expected, EDF always has fewer invocations than LLREF. As with the

comparison of LLREF and PF, the number of cases where the schedulers have equal numbers of invocations increases with the

number of processors. This has the same cause; if there is a task deadline at every tick, then both EDF and LLREF will schedule

at every tick. Thus, for some sets of tasks, all three algorithms will be identical when considering number of scheduler

invocations. The comparison done by RTSIM is shown in Figure 4.

Optimal Scheduling Algorithms on multiprocessors: A comparative study| ISSN: 2321-9939

IJEDR1303060
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

Website: www.ijedr.org | Email ID: editor@ijedr.org
302

Fig 4 Difference in number of scheduler invocations

C. Task Migrations

A goal of any multiprocessor scheduling algorithm should be to minimize the number of task migrations required to schedule

a task set. A task migration requires making all the resources available to the new processor. Depending on the architecture of the

system, this could be quite costly.

For all three algorithms, task migrations can only occur when the scheduler is invoked. However, a task migration does not

necessarily occur on every scheduler invocation. Task migrations could theoretically occur at every tick in PF. Since LLREF

requires fewer scheduler invocations, it makes sense that LLREF would almost always require fewer task migrations as well.

However, our simulation results show that the trends for scheduler invocations do not translate directly to the trends for task

migrations when comparing LLREF and PF.

Specifically, we observe that there is a larger variation in the number of task migrations. To reduce task migrations LLREF

keeps tasks that have hit the execution ceiling on the same processor while PF implementation does not make any effort to ensure

that a task scheduled in two consecutive ticks remains on the same processor. The differences between these algorithms in terms

of task migration performance depend partially on the implementation. As a result global EDF requires the fewest task migrations

a task migrates only when preemption occurs. LLREF must sometimes migrate tasks in order to execute all of them; in some

cases, a task set that has many migrations is simply not schedulable with EDF. The comparison done by RTSIM is shown in

Figure 5.

Fig 5 Differences in number of task migrations

V.CONCLUSION

We examined three scheduling algorithms for uniform multiprocessor systems: global EDF, PF, and LLREF. Although simple

and straightforward, global EDF is a non-optimal multiprocessor scheduling algorithm but it demonstrated its merits with its low

overhead in terms of task migrations and scheduler invocations. PF improved on global EDF by feasibly scheduling a large

number of task sets that global EDF could not schedule but performed far worse than global EDF in terms of overhead. LLREF

was midway between global EDF and PF. In every aspect we evaluated, LLREF performed better than PF. In terms of overhead,

LLREF performed worse than global EDF, but this performance gap is considerably reduced when compared to PF. In the end,

choosing whether to use one of these algorithms will require deciding whether optimality or low scheduler overhead is more

important.

Optimal Scheduling Algorithms on multiprocessors: A comparative study| ISSN: 2321-9939

IJEDR1303060
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

Website: www.ijedr.org | Email ID: editor@ijedr.org
303

REFERENCES

[1] Baker, T. P. A comparison of global and partitioned edf schedulability tests for multiprocessors. Tech. rep., In International

Conf. on Real-Time and Network Systems, 2005.

[2] Baruah, S. K., Cohen, N. K., Plaxton, C. G., and Varvel, D. A. Proportionate progress: a notion of fairness in resource

allocation. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing (New York, NY, USA, 1993),

STOC ’93, ACM,pp. 345–354.

[3] Baruah, S. K., Gehrke, J., and Plaxton, C. G. Fast scheduling of periodic tasks on multiple resources. In Proceedings of the

9th International Symposium on Parallel Processing (Washington, DC, USA, 1995), IPPS ’95, IEEE Computer Society, pp.

280–288.

[4] Brandenburg, B. B., Calandrino, J. M., and Anderson, J. H. On the scalability of real- time scheduling algorithms on

multicore platforms: A case study. In IEEE Real-Time SystemsSymposium (2008), pp. 157–169.

[5] Cho, H., Ravindran, B., and Jensen, E. D. An optimal real-time scheduling algorithm for multiprocessors. In RTSS ’06:

Proceedings of the 27th IEEE International Real-Time Systems Symposium (Washington, DC, USA, 2006), IEEE Computer

Society, pp. 101–110.

[6] Holman, P., and Anderson, J. Adapting Pfair scheduling for symmetric multiprocessors.Journal of Embedded Computing 1, 4

(2005), 543–564.

[7] Liu, C. L., and Layland, J. W. Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20

(January 1973), 46–61.

[8] Retis Lab, Scuola Superiore Sant’Anna. The RTSIM project. http://rtsim.sssup.it.

