
© 2014 IJEDR | Conference Proceeding (NCISECT 2015) | ISSN: 2321-9939

IJEDRCP1501026 International Journal of Engineering Development and Research (www.ijedr.org) 137

A Comparative Study of Effort Estimation

Techniques Using Back Propagation Algorithm

S. Abbinaya
1
, M. Senthil Kumar

2

1
Student,

2
Associate Professor

Valliammai Engineering College,Chennai

__

Abstract - Software effort estimation is the process of predicting the most realistic amount of effort (expressed in terms of

person-hours or money) required to develop or maintain software based on incomplete and uncertain input. Effort

estimation is an important part of software development work and provides essential input to project feasibility analyses,

bidding, budgeting and planning. This paper is concerned with constructing software effort estimation model based on

neural network techniques. In this paper, two common estimation methods like use case point and function point are used

to estimate the effort in the software development. The network is trained with the back propagation algorithm by

iteratively processing a set of training samples and comparing the two effort estimation methods (use case point and

function point) with the actual effort. The performance comparisons of these methods are done by using a sample past

project data. Depends upon the requirements, the performance metrics will be changed.

IndexTerms - Artificial neural networks, back propagation, feed forward neural networks, decision table, use case point,

function point, software effort estimation, and regression.

__

I. INTRODUCTION

In software engineering effort is used to denote measure of use of workforce and is defined as total time that takes members of

a development team to perform a given task. It is usually expressed in units such as man-day, man-month, and man-year. An

estimation of accuracy and concise effort (quantity of men/hours required for the development of the software) are crucial for the

effective management of the software project [5]. This value is important as it serves as basis for estimating other values relevant

for software projects, like cost or total time required to produce a software product. The basic idea of prediction of effort by

analogy is that projects having similar features such as size and complexity will be similar with respect to project effort. The

method gains its importance since the estimate is based on actual project experience [9].

Traditional algorithmic techniques such as regression models, Software Life Cycle Management (SLIM), COCOMO II model,

require estimation process in a long term. But, nowadays that is not acceptable for software developers and companies. Newer

soft computing techniques to effort estimation based on non-algorithmic techniques may offer an alternative for solving the

problem [4]. The uncertainty in size can be controlled by using fuzzy logic and the parameters can be tuned by using Particle

Swarm Optimization. The Fuzzy Based PSO technique is applied for Software Effort Estimation. A methodology is developed to

estimate effort using Fuzzy Logic and PSO with inertia weight [1]. But the weights are not updated as in the gradient descent.

Currently used software development effort estimation models such as, COCOMO and Function Point Analysis (FPA), do not

consistently provide accurate project cost and effort estimates. These techniques have been proven unsatisfactory for estimating

cost and effort because the lines of code (LOC) and function point (FP) are both used for procedural oriented paradigm [6,7].

Both of them have certain limitations. The LOC is dependent on the programming language and the FPA is based on human

decisions. Hence effort estimation during early stage of software development life cycle plays a vital role for determining whether

a project is feasible in terms of a cost benefit analysis [8].

Accurate estimation of a software development effort is critical for good management decision making. The aim of the present

work is to propose an optimal estimation method for software effort estimation. In general software effort estimation, the most

commonly adopted architecture, learning algorithm and activation function are the feed-forward multilayer perceptions, the back

propagation algorithm respectively [3]. One of the major drawbacks in the existing effort estimation there has been much time

spent on the selection of accurate effort estimation. The present work explores a decision table could be developed as a tool which

would help on minimizing the time spent on the selection of accurate effort estimation, method and would help organization on,

Define most adequate effort estimation method in different software development environment, Implementing the selected

technology, Testing of resulting model accuracy.

The remainder of this paper is organized as follows. Section 2 gives an overview of the materials and methods. Section 3

describes the proposed work. Section 4 describes the experimental evaluation. Section 5 concludes and suggests directions for

future work.

II. MATERIALS AND METHODS

This section gives a brief overview of the use case point’s and function point method, decision table, and neural networks.

 Use Case Points Method

http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Estimation
http://en.wikipedia.org/wiki/Software

© 2014 IJEDR | Conference Proceeding (NCISECT 2015) | ISSN: 2321-9939

IJEDRCP1501026 International Journal of Engineering Development and Research (www.ijedr.org) 138

This section gives a brief overview of the steps in the use case point’s method [8]. The first step is to classify the actors as simple,

average or complex. A simple actor represents another system with a defined Application Programming Interface, API, an

average actor is another system interacting through a protocol such as TCP/IP, and a complex actor may be a person interacting

through a GUI or a Web page. A weighting factor is assigned to each actor type in the following manner:

 Simple: Weighting factor 1

 Average: Weighting factor 2

 Complex: Weighting factor 3

Similarly each use case is defined as simple, average or complex, depending on number of transactions in the use case

description, including secondary scenarios. Use case complexity is then defined and weighted in the following manner:

 Simple: Weighting factor 5

 Average: Weighting factor 10

 Complex: Weighting factor 15

The Calculation of UUCW AND UAW Weights and Points are as follows:

UUCP = UAW + UUCW (1)

3. The use case points are adjusted based on the values assigned to a number of technical factors (Table 1) and environmental

factors (Table 2).

Table 1.Technical complexity factors

Factor Description Weight

T1 Distributed system 2

T2 Performance objectives 2

T3 End-user efficiency 1

T4 Complex processing 1

T5 Reusable code 1

T6 Easy to install 0.2

T7 Easy to use 0.2

T8 Portable 2

T9 Easy to change 1

T10 Concurrent use 1

T11 Security 1

T12 Access for third parties 1

T13 Training needs 1

Each factor is assigned a value between 0 and 5 depending on its assumed influence on the project. A rating of 0 means the factor

is irrelevant for this project; 5 mean it is essential.

The Technical Factor (TCF) is calculated multiplying the value of each factor (T1–T13) in Table 1 by its weight and then adding

all these numbers to get the sum called the Factor. Finally, the following formula is applied:

TCF = 0.6 + (.01*TFactor) ---------- (2)

Table 2.Environmental factors

Factor Description Weight

E1 Familiar with the development process 1.5

E2 Application experience 0.5

E3 Object-oriented experience 1

E4 Lead analyst capability 0.5

E5 Motivation 1

E6 Stable requirements 2

E7 Part-time staff -1

E8 Difficult programming language -1

4. The Environmental Factor (EF)is calculated accordingly by multiplying the value of each factor (F1 – F8) in Table 2 by its

weight and adding all the products to get the sum called the Efactor. The formula below is applied:

EF = 1.4+(-0.03*EFactor) (3)

The adjusted use case points (UCP) are calculated as follows:

UCP = UUCP*TCF*EF (4)

 Function Points Method

FP Analysis is a process used to calculate software functional size [10]. Counting FP requires the identification of five types of

functional components: Internal Logical Files (ILF), External Interface Files (EIF), External Inputs (EI), External Outputs (EO)

and External Inquiries (EQ). Each functional component is classified as a certain complexity based on its associated file numbers

© 2014 IJEDR | Conference Proceeding (NCISECT 2015) | ISSN: 2321-9939

IJEDRCP1501026 International Journal of Engineering Development and Research (www.ijedr.org) 139

such as Data Element Types (DET), File Types Referenced (FTR) and Record Element Types (RET). Table 1 illustrates how each

function component is then assigned a weight according to its complexity. The Unadjusted Function Point (UFP) is calculated

with Equation 1, where Wij are the complexity weights and Zij are the counts for each function component.

Table 1: Function Component Complexity Weight Assignment

Component LOW AVERAGE HIGH

External Inputs 3 4 6

External outputs 4 5 7

External Inquiries 3 4 6

Internal Logical Files 7 10 15

External Interface Files 5 7 10

Once calculated, UFP is multiplied by a value Adjustment Factor (VAF), which takes into account the supposed contribution of

technical and quality requirements. The VAF is calculated from 14 General System Characteristics (GSC), using Equation 2; The

GSC includes the characteristics used to evaluate the overall complexity of the software.

VAF = (TDI * 0.01) + 0.65 (5)

Finally, a FP is calculated by the multiplication of UFP and VAF, as expressed in Equation 3.

FP = UFP * VAF (6)

Decision table

 When building a DT, first step is the identification of the conditions and actions and their associated states that have an

influence on the decision problem.

 The actual construction of the DT on the basis of the defined decision rules.

 Examines the DT with regard to the requirements of completeness, contradiction and correctness.

 The neural network is used to train the decision table with the previous project effort values. The multilayer feed forward

network is used for creating neural network and it has one input layer, at least one hidden layer and one output layer.

Back propagation is used as the training methodology i.e. the learning rule.

Neural network

 Artificial intelligence (AI) has been widely used in many domains such as medicine, economics, business, and others.

Recently, the interest of applying AI in software engineering has been soaring. Conducting software estimation is essential in any

project as it helps project managers plan, identify risks, and determine the effort and cost of projects [2]. Artificial intelligence is

trying to achieve using techniques like mimicking neural networks.

Computational models inspired by central nervous systems, which is capable of machine learning as well as pattern recognition.

Interconnected neurons which can compute values from inputs. The network trained back propagation learning algorithm by

iteratively processing a set of training samples and comparing the networks prediction with actual effort.

Back propagation, "backward propagation of errors", is a common method of training artificial neural networks used in

conjunction with an optimization method such as gradient descent. The method calculates the gradient of a loss function with

respects to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the

weights, in an attempt to minimize the loss function. The most widely used algorithm for supervised learning with multilayered

feed forward networks. The basic idea of back propagation is the repeated application of the chain rule to compute the influence

of each weight on the network with respect to an arbitrary error function E [3].

Back propagation requires a known, desired output for each input value in order to calculate the loss function gradient. It is

therefore usually considered to be a supervised learning method, although it is also used in some unsupervised networks such as

auto encoders. It is a generalization of the delta rule to multi-layered feed forward networks, made possible by using the chain

rule to iteratively compute gradients for each layer. Back propagation requires that the activation function used by the artificial

neurons (or "nodes") be differentiable.

III. PROPOSED WORK

The Architecture diagram shows the overall concept of system. Figure 1 shows the proposed system is devised by using use case

point and function point method for estimation. The input of the use case point and function point should be trained by the neural

network training algorithm and the trained input is stored in the decision table. To estimating with use case points is that the

process can be automated.

It should be possible to establish an organizational average implementation time per use case point. Use case points are a very

pure measure of size, because the size of an application will be independent of the size, skill, and experience of the team that

implements it.LOC measures are not useful during early project phases where estimating the number of lines of code that will be

delivered is challenging.

http://en.wikipedia.org/wiki/Artificial_neural_networks
http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Loss_function
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Unsupervised_learning
http://en.wikipedia.org/wiki/Autoencoder
http://en.wikipedia.org/wiki/Delta_rule
http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Chain_rule
http://en.wikipedia.org/wiki/Chain_rule
http://en.wikipedia.org/wiki/Activation_function
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Differentiable

© 2014 IJEDR | Conference Proceeding (NCISECT 2015) | ISSN: 2321-9939

IJEDRCP1501026 International Journal of Engineering Development and Research (www.ijedr.org) 140

By using the regression analysis the inputs of those methods will be refined from the trained input. After refined the input, the

effort is calculated by two methods i.e. use case point and function point. Finally compare the performance of both estimation

methods and the decision table will show which method will produce the accurate result.

Figure 1 Overall Architecture

Training process

 The decision table is trained by neural network using the back propagation algorithm. The flow chart describes the

process of training the decision table.

Figure 2 Training process flowchart

Initially the value of training iteration is assigned as 1 and the weight with random values. Then present input pattern and

calculate the output values. After the output values are calculated, the mean square error (MRE) will be calculated. Then if the

calculated MSE is lesser than or equal to the Msemm, the training process will be stopped. Otherwise, the number of iterations will

be compared with the maximum number of iterations. If the iteration is greater than or equal to the Epoch max, the training process

will be stopped. Otherwise the weights will be updated and the iteration is incremented.

Back

propagation

training

algorithm

Test data

USECASE

POINTANALY

SIS

FUNCTION

POINTANALY

SIS

Performance

of effort

estimation

Use case

point input

Function

point input

© 2014 IJEDR | Conference Proceeding (NCISECT 2015) | ISSN: 2321-9939

IJEDRCP1501026 International Journal of Engineering Development and Research (www.ijedr.org) 141

IV. EXPERIMENTAL EVALUATION

The experimental evaluation of the proposed model is performed using 12 projects. In software estimation, most practitioners use

MMRE and PRED(X) to calculate the error percentage. The magnitude of relative error (MRE) for each observation I can be

obtained as:

 │actual efforti– predicted efforti│

MREi =

 Actual efforti---------------------------- (7)

MMRE can be achieved through averaging the summation of MRE over N observations:

MMRE= I ------------------- (8)

On the other hand, PRED(X) is the percentage of projects for which the estimate falls within x% of the actual value. For instance,

if PRED (30) = 60, this indicates that 60% of the projects fall within 30% error range.

Table 4 Estimation values of function point

Project

id

Domain Expected

effort

Actual

effort

Sts33 https://sctoolsnemak.com/ 128 137

Sts97 http://sridhanalaxmitex.com/ 106 104

Sts05 http://www.stigmata.co.in/ 90 89

Sts02 www.travopia.com 68 95

Sts46 www.lucidtechie.com 52 53

Sts22 www.automatrotech.com 47 47.81

Sts11 http://jemicluster.com/ 37.92 37.81

Sts39 http://brightmycareer.com/ 38 42

Sts16 http://www.mmnengineering.com/ 41.4 41.9

Sts29 http://www.afreshtech.com/ 20.3 20.5

Sts62 http://dukesengineers.com/ 180 178

Table 5 Estimation values of use case point

Project

id

Domain Expected

effort

Actual

effort

sts33 https://sctoolsnemak.com/ 530 570

sts97 http://sridhanalaxmitex.com/ 524 554

sts05 http://www.stigmata.co.in/ 467 488

sts02 www.travopia.com 408 432

sts46 www.lucidtechie.com 378 380

sts22 www.automatrotech.com 234 256

sts11 http://jemicluster.com/ 220 230

sts39 http://brightmycareer.com/ 212 210

sts16 http://www.mmnengineering.com/ 256 250

sts29 http://www.afreshtech.com/ 170 210

sts62 http://dukesengineers.com/ 180 176

EXPERIMENTAL RESULTS

 The performance of use case points and function points are compared using decision table based on the back propagation

methodology. It is used to train the neural network. A set of input training data and the expected output is created and the network

is trained with the training data set. There are multiple iterations the network tries to converge the expected output. Through

multiple iterations over the test data, it does by reducing an error function. The error rate is calculated by using back propagation

by compare the error rate between the expected and actual effort of both UCP and FP methods. The following table 6 shows the

comparison of Effort estimation results.

Table 6 Comparison of Effort estimation results

Project

id

Domain UCP

effort

FP effort

sts33 https://sctoolsnemak.com/ 0.0701 0.0656

sts97 http://sridhanalaxmitex.com/ 0.0541 0.0192

sts05 http://www.stigmata.co.in/ 0.0430 0.0112

sts02 www.travopia.com 0.0555 0.2842

sts46 www.lucidtechie.com 0.0052 0.0188

sts22 www.automatrotech.com 0.0859 0.0169

sts11 http://jemicluster.com/ 0.0434 0.0029

sts39 http://brightmycareer.com/ 0.0095 0.0952

http://www.travopia.com/
http://www.lucidtechie.com/
http://www.automatrotech.com/
http://www.travopia.com/
http://www.lucidtechie.com/

© 2014 IJEDR | Conference Proceeding (NCISECT 2015) | ISSN: 2321-9939

IJEDRCP1501026 International Journal of Engineering Development and Research (www.ijedr.org) 142

sts16 http://www.mmnengineering.com/ 0.024 0.0119

sts29 http://www.afreshtech.com/ 0.1904 0.0097

sts62 http://dukesengineers.com/ 0.0227 0.0112

PERFORMANCE MEASURES

 The performance of models generating continuous output can be assessed in many ways, including PRED (30), MMRE,

correlation, etc. PRED (30) is a measure calculated from the relative error, or RE, which is the relative size of the difference

between the actual and estimated value. One way to view these measures is to say that training data contains records with

variables 1;2;3;...;N and performance measures add additional new variables N +1;N+2;....

Figure3 and 4 showing the performance chart of both UCP and FP methods

Figure 3 Effort estimation counts

Figure 4 Effort estimation hours/person

V. CONCLUSION AND FUTURE WORK

The use case point (UCP) and function point model has been widely used to estimate software size and effort. The main

advantage of the UCP model is that it can be used in the early stages of the software life cycle when the use case diagram is

available. The UCP model has some limitations since it assumes that the relationship between software effort and size is linear.

There are several software effort forecasting models that can be used in forecasting future software development effort. We have

constructed an effort estimation model based on artificial neural networks. The neural network that we have used to predict the

software development effort is the single layer feed forward neural network with the identity function at both the input and output

units.

In our work we compare the results of two different effort estimation methods and found an optimal neural network topology with

best estimation method for software effort estimation. Finally, we conclude that the present work provides accurate forecasts for

the software development effort. Further work can be done by the identification and mitigation of risk when estimating the effort.

REFERENCES

[1]A.BalaKrishna, T.K.Rama Krishna, fuzzy and swarm intelligence for software effort estimation, Vol. 2, No. 1, ISSN 2167-

6372, 2012.

[2] Ali BouNassif and Luiz Fernando Capretz, Danny Ho, Estimating Software Effort Based on Use Case Point Model Using

Sugeno Fuzzy Inference System, pages.393-398, 2011.

[3] Ch.Satyananda Reddy and KVSVN Raju, An Optimal Neural Network Model forSoftware Effort Estimation, Vol.3 No.1,

2010.

© 2014 IJEDR | Conference Proceeding (NCISECT 2015) | ISSN: 2321-9939

IJEDRCP1501026 International Journal of Engineering Development and Research (www.ijedr.org) 143

[4] ImanAttarzadeh and Siew Hock Ow,A Novel Algorithmic Cost Estimation Model Based on Soft Computing Technique,

Journal of Computer Science 6 (2): 117-125, 2010.

[5] Katia Cristina A. Damaceno Borges, Iris Fabiana de BarcelosTronto, A Data PreProcessing Method for Software Effort

Estimation Using Case-Based Reasoning, volume 16, Number 3, 2013.

[6] Mohammed Wajahat Kamal and Moataz A. Ahmed, A Proposed Framework for Use Case Based Effort Estimation using

Fuzzy Logic: Building upon the outcomes of a Systematic Literature Review, JNCAA 1(4): 953-976, 2011

[7] OumoutChouseinoglou, A Fuzzy Model of Software Project Effort Estimation, Vol.4, No.2, pp. 68-76, 2013.

[8] ShashankMouliSatapathy, Santanu Kumar Rath, Use Case Point Approach BasedSoftware Effort Estimation using Various

Support Vector Regression Kernel Methods, volume7(4),87-101, 2014.

[9] S.Malathi and Dr.S.Sridhar,Estimation of effort in software cost analysis for Heterogeneous dataset using fuzzy analogy,

Vol.10, No.10, 2012.

[10] Wei Xia, Luiz Fernando Capretz, Danny Ho, Faheem Ahmed, A New CalibrationFor function Point Complexity Weights,

Volume 50, Issue 7-8, pp. 670-683, 2008.

