
IJEDRCP1403033 International Jou

HQLS-PY: A New Framework to Achieve High

Quality in Large Scale Software Product

Development Using POKA
1
K. K. Baseer,

1
Research Scholar, JNIAS

2
Professor, Dept. of CSE, SVU College of Engineering, Tirupati.

3Associate Professor, Dept. of CSE, JNTUCEA, Anantapuramu.

Abstract—We propose a new model for large scale Software development for Products and Services with high quality

expectations. It would be based on investing upfront in the Software Architecture of the system, designing with the

software product monitoring and alerting logic in place, end

service based on Poka-Yoke principles. The basic idea behind developing this new model is to have high quality software

products and services that can be developed faster, chea

scenarios, can deliver outstanding user experience and be failing safe for SDLC bottlenecks which arise in both

conventional and Agile Software Development. The proposed model has the following are

- Get the right Software Architecture in place

- Ensure high quality software is developed

- It is based on POKA-YOKE principles

- Focus is on user experience

- Ensuring need of the software is identified

- Architecture design follows 12 factor principles

IndexTerms—Usability, Poka-Yoke, Product, Framework, Software Architecture, Quality, Product Monitor, Services

__

I. INTRODUCTION

The software architecture of a program or computing system is the structure or structures of the system, which comprise software

elements, the externally visible properties of those elements, and the relationships among them [1]. Non

(NFR) approach, Quality Attribute Model approach and Intuitive Design approach. For each approach having its own bottlenecks

such as decisions are not precisely determined, less modularization, no predictive model, no amenable architecture, no scale

architecture and no organizing requirements etc., shown in figure 1 [16,17]. Software must possess the qualities like Safety,

Reliability, Availability, Cost, Maintainability, Performance or Response, Time, Energy consumption [5]. Usability is importa

not only to increase the speed and accuracy of the range of tasks carried out by a range of users of a system, but also to ensure the

safety of the user. Productivity is also imperative where the software is used to control dangerous processes. Computer magaz

software reviews now include usability as a ratings category [6]. To achieve non

software architecture still remain a difficult task as many stakeholders involved in the selection process as shown in figure

2.There are some recent attempts to establish software science as a foundation of software engineering. This may promote more

analytical reasoning about software architecture, if it becomes popular. Software architectural design would benefit from

analytical reasoning with scientific foundations. Importance of software architecture in the software design process is generally

accepted among practitioners [7]. Below are some ideas and SE paradigms identified for better improving the Software

Development Life cycle and identify the opti

without compromising the code quality and functionality.

A. Frameworks

The key concept in using frameworks is design reuse. In contrast to past approaches that applied the

software functions (such as sine), the objective of frameworks is to reuse complete domain

records, accounts, or security accounts. In other words, we try to preserve our existing development

and domain class design, by creating a skeleton frame representing, for example, the implementation of an accoun

interface components.

© 2014 IJEDR | Conference Proceeding (NCETSE

l Journal of Engineering Development and Research (

PY: A New Framework to Achieve High

Quality in Large Scale Software Product

Development Using POKA-YOKE Principles
K. K. Baseer,

2
A. Rama Mohan Reddy,

3
C. Shoba Bindu

Research Scholar, JNIAS-JNTUA, Anantapuramu. kkbasheer.ap@gmail.com

Professor, Dept. of CSE, SVU College of Engineering, Tirupati. ramamohansvu@gmail.com

Professor, Dept. of CSE, JNTUCEA, Anantapuramu. shobabindhu@gmail.com

We propose a new model for large scale Software development for Products and Services with high quality

expectations. It would be based on investing upfront in the Software Architecture of the system, designing with the

ting logic in place, end-to-end user experience, experimentation and quality of

Yoke principles. The basic idea behind developing this new model is to have high quality software

products and services that can be developed faster, cheaper and in better way, it can scale with demand in various

scenarios, can deliver outstanding user experience and be failing safe for SDLC bottlenecks which arise in both

conventional and Agile Software Development. The proposed model has the following areas:

Get the right Software Architecture in place

Ensure high quality software is developed

YOKE principles

Ensuring need of the software is identified

Architecture design follows 12 factor principles

Yoke, Product, Framework, Software Architecture, Quality, Product Monitor, Services

__

ure of a program or computing system is the structure or structures of the system, which comprise software

elements, the externally visible properties of those elements, and the relationships among them [1]. Non

ty Attribute Model approach and Intuitive Design approach. For each approach having its own bottlenecks

such as decisions are not precisely determined, less modularization, no predictive model, no amenable architecture, no scale

nizing requirements etc., shown in figure 1 [16,17]. Software must possess the qualities like Safety,

Reliability, Availability, Cost, Maintainability, Performance or Response, Time, Energy consumption [5]. Usability is importa

peed and accuracy of the range of tasks carried out by a range of users of a system, but also to ensure the

safety of the user. Productivity is also imperative where the software is used to control dangerous processes. Computer magaz

w include usability as a ratings category [6]. To achieve non-functional requirements for any modeling

software architecture still remain a difficult task as many stakeholders involved in the selection process as shown in figure

empts to establish software science as a foundation of software engineering. This may promote more

analytical reasoning about software architecture, if it becomes popular. Software architectural design would benefit from

c foundations. Importance of software architecture in the software design process is generally

accepted among practitioners [7]. Below are some ideas and SE paradigms identified for better improving the Software

Development Life cycle and identify the optimize some areas in SDLC so that Time To Market can be made faster and efficient,

without compromising the code quality and functionality.

The key concept in using frameworks is design reuse. In contrast to past approaches that applied the

software functions (such as sine), the objective of frameworks is to reuse complete domain-specific units

records, accounts, or security accounts. In other words, we try to preserve our existing development

and domain class design, by creating a skeleton frame representing, for example, the implementation of an accoun

© 2014 IJEDR | Conference Proceeding (NCETSE-2014) | ISSN: 2321-9939

rch (www.ijedr.org) 164

PY: A New Framework to Achieve High

Quality in Large Scale Software Product

YOKE Principles

kkbasheer.ap@gmail.com

ramamohansvu@gmail.com

shobabindhu@gmail.com

We propose a new model for large scale Software development for Products and Services with high quality

expectations. It would be based on investing upfront in the Software Architecture of the system, designing with the

end user experience, experimentation and quality of

Yoke principles. The basic idea behind developing this new model is to have high quality software

per and in better way, it can scale with demand in various

scenarios, can deliver outstanding user experience and be failing safe for SDLC bottlenecks which arise in both

as:

Yoke, Product, Framework, Software Architecture, Quality, Product Monitor, Services

__

ure of a program or computing system is the structure or structures of the system, which comprise software

elements, the externally visible properties of those elements, and the relationships among them [1]. Non-Functional Requirement

ty Attribute Model approach and Intuitive Design approach. For each approach having its own bottlenecks

such as decisions are not precisely determined, less modularization, no predictive model, no amenable architecture, no scale up

nizing requirements etc., shown in figure 1 [16,17]. Software must possess the qualities like Safety,

Reliability, Availability, Cost, Maintainability, Performance or Response, Time, Energy consumption [5]. Usability is important

peed and accuracy of the range of tasks carried out by a range of users of a system, but also to ensure the

safety of the user. Productivity is also imperative where the software is used to control dangerous processes. Computer magazine

functional requirements for any modeling

software architecture still remain a difficult task as many stakeholders involved in the selection process as shown in figure

empts to establish software science as a foundation of software engineering. This may promote more

analytical reasoning about software architecture, if it becomes popular. Software architectural design would benefit from

c foundations. Importance of software architecture in the software design process is generally

accepted among practitioners [7]. Below are some ideas and SE paradigms identified for better improving the Software

mize some areas in SDLC so that Time To Market can be made faster and efficient,

The key concept in using frameworks is design reuse. In contrast to past approaches that applied the term reuse to individual

specific units - for instance, customer

records, accounts, or security accounts. In other words, we try to preserve our existing development work, such as task analysis

and domain class design, by creating a skeleton frame representing, for example, the implementation of an account and its

IJEDRCP1403033 International Jou

F

Figure 2: Influence of stakeholders

Then, application programmers need only tailor the frame to the specifics of a particular application domain. To make the

difference clear: In traditional approaches to software reuse, we create an application program using existing

database access, mathematical functions, and the user interface. In contrast, design reuse means that we adapt a prefabricate

fully developed hull—by sub classing, for instance. Thus, in frameworks, the program logic is already presen

© 2014 IJEDR | Conference Proceeding (NCETSE

l Journal of Engineering Development and Research (

Figure 1: Limitations of existing approach

Figure 2: Influence of stakeholders on the architect [1]

Then, application programmers need only tailor the frame to the specifics of a particular application domain. To make the

difference clear: In traditional approaches to software reuse, we create an application program using existing

database access, mathematical functions, and the user interface. In contrast, design reuse means that we adapt a prefabricate

by sub classing, for instance. Thus, in frameworks, the program logic is already presen

© 2014 IJEDR | Conference Proceeding (NCETSE-2014) | ISSN: 2321-9939

rch (www.ijedr.org) 165

Then, application programmers need only tailor the frame to the specifics of a particular application domain. To make the

difference clear: In traditional approaches to software reuse, we create an application program using existing class libraries for

database access, mathematical functions, and the user interface. In contrast, design reuse means that we adapt a prefabricated,

by sub classing, for instance. Thus, in frameworks, the program logic is already present.

IJEDRCP1403033 International Jou

Figure 3: Business versus Application Layer

B. Sedimentation Pattern
After we ship the first small business domain and the users approve it, we gradually add software solutions for more elements

the application domain following the same method.

new aspects. In simple terms, the ―artǁ of creating frameworks consists of finding exactly those implementation chunks (in

object-oriented jargon, operations and attributes) that yo

within each implementation of a new type of account. We then extract these chunks from each implementation and represent them

as frameworks in the deeper of two layers, the application domai

Taking up the example of an account again, the outcome of this procedure is that all classes in which the deposit and withdra

of money are implemented settle into the ADL. Each specific type

to a specific type of business activity (such as loan processing or investment consulting) and has specific features particul

it—for example, checking credit limits is a specific feature of

of savings accounts. All the implementation chunks that deal with such tasks are subsumed under frameworks deposited in the

business domain layer (see Figure 3). All frameworks in this

high degree of reuse. As application development progresses, the sedimentation of implementation chunks decreases, until all

stable frameworks have sedimented in the ADL.

C. Tool-material Design

The Tool–Material design pattern, which describes the interplay between application domain objects (such as an account) and

objects for interaction purposes (such as an editor), is derived from the tool

materials can be worked on with tools- defines the interdependencies between two (technical) objects: A tool is produced for

working on specific materials—for example, an editor tool might enable users to work on an account (the material, for exampl

for making deposits and withdrawals). Thus, a material and the user interface are not directly connected

themselves handle all interactions. Implementing a tool requires knowledge about the nature of relevant materials; implementi

material remains independent of specific tools. This means that when an application system‘s software architecture is in

accordance with the Tool–Material pattern, user interface changes will not affect the material frameworks contained in the

business design layer or the ADL. Role Pattern:

(used by all the customer roles) is a framework in the application domain. In contrast, role

frameworks in the business domain. If a role changes, it affects only that role‘s framework. The customer core framework in the

application domain as well as the frameworks of other roles remain unaffected, and

not obstructed. Also, users and software engineers can use the same terminology and refer to the same entities, the roles. Just like

the Tool–Material pattern, the Role pattern is completely integrated into the development life cycle and is another excellent

example of how design patterns can facilitate user participation.

these two issues:

• Criteria for reuse. It is important to precisely define the situations in which developers may reuse a particular tool. A

catalog, for example, might list all the tools available for reuse together with the prerequisites for using them. Otherwise,

there is the danger that tools might be used outside the intended context just because they have already been

implemented and are ready for reuse. Experience has shown that problems arise in such cases, because adapting tools for

mid- or long-term use cancels out the benefits of reuse and destabilizes the business or even application layers.

• Usage models. A usage model is the set of

guide how to use an application. The usage model must be standardized early in the development process; otherwise,

developers might unknowingly use different models as they simult

worst, this could necessitate the modification of application domain frameworks, thus slowing down or even reversing

the framework maturation (sedimentation) process.

D. Architecture Principles

For building a network service (e.g. a web application), you should design it as a Twelve

of this paper is structured as follows: In Section II, we discusson Poka

© 2014 IJEDR | Conference Proceeding (NCETSE

l Journal of Engineering Development and Research (

Figure 3: Business versus Application Layer

After we ship the first small business domain and the users approve it, we gradually add software solutions for more elements

the application domain following the same method. These frameworks will overlap in part with existing ones but will also add

new aspects. In simple terms, the ―artǁ of creating frameworks consists of finding exactly those implementation chunks (in

oriented jargon, operations and attributes) that you would otherwise have to design over and over again

within each implementation of a new type of account. We then extract these chunks from each implementation and represent them

as frameworks in the deeper of two layers, the application domain layer (see Figure 3). This process is called sedimentation.

Taking up the example of an account again, the outcome of this procedure is that all classes in which the deposit and withdra

of money are implemented settle into the ADL. Each specific type of account (such as checking or savings) is always connected

to a specific type of business activity (such as loan processing or investment consulting) and has specific features particul

for example, checking credit limits is a specific feature of current accounts, and progressive interest rates are a specific feature

of savings accounts. All the implementation chunks that deal with such tasks are subsumed under frameworks deposited in the

business domain layer (see Figure 3). All frameworks in this layer must use the basic frameworks in the ADL, thus ensuring a

high degree of reuse. As application development progresses, the sedimentation of implementation chunks decreases, until all

stable frameworks have sedimented in the ADL.

Material design pattern, which describes the interplay between application domain objects (such as an account) and

objects for interaction purposes (such as an editor), is derived from the tool–material metaphor.1,2 This metaphor

defines the interdependencies between two (technical) objects: A tool is produced for

for example, an editor tool might enable users to work on an account (the material, for exampl

for making deposits and withdrawals). Thus, a material and the user interface are not directly connected

themselves handle all interactions. Implementing a tool requires knowledge about the nature of relevant materials; implementi

material remains independent of specific tools. This means that when an application system‘s software architecture is in

Material pattern, user interface changes will not affect the material frameworks contained in the

Role Pattern: The idea behind the Role pattern is that the core implementation of a customer

(used by all the customer roles) is a framework in the application domain. In contrast, role-specific customer implementations are

in the business domain. If a role changes, it affects only that role‘s framework. The customer core framework in the

application domain as well as the frameworks of other roles remain unaffected, and—even more importantly

Also, users and software engineers can use the same terminology and refer to the same entities, the roles. Just like

Material pattern, the Role pattern is completely integrated into the development life cycle and is another excellent

w design patterns can facilitate user participation. Style guides for framework development must take into account

It is important to precisely define the situations in which developers may reuse a particular tool. A

catalog, for example, might list all the tools available for reuse together with the prerequisites for using them. Otherwise,

there is the danger that tools might be used outside the intended context just because they have already been

ready for reuse. Experience has shown that problems arise in such cases, because adapting tools for

term use cancels out the benefits of reuse and destabilizes the business or even application layers.

A usage model is the set of all metaphors (as, for instance, the tool–material and role metaphors) that

guide how to use an application. The usage model must be standardized early in the development process; otherwise,

developers might unknowingly use different models as they simultaneously build tools for several business domains. At

worst, this could necessitate the modification of application domain frameworks, thus slowing down or even reversing

the framework maturation (sedimentation) process.

uilding a network service (e.g. a web application), you should design it as a Twelve-Factor Application [8]. The remainder

of this paper is structured as follows: In Section II, we discusson Poka-yoke principles. In Section III, we present Related Work,

© 2014 IJEDR | Conference Proceeding (NCETSE-2014) | ISSN: 2321-9939

rch (www.ijedr.org) 166

After we ship the first small business domain and the users approve it, we gradually add software solutions for more elements of

These frameworks will overlap in part with existing ones but will also add

new aspects. In simple terms, the ―artǁ of creating frameworks consists of finding exactly those implementation chunks (in

u would otherwise have to design over and over again—for example,

within each implementation of a new type of account. We then extract these chunks from each implementation and represent them

n layer (see Figure 3). This process is called sedimentation.

Taking up the example of an account again, the outcome of this procedure is that all classes in which the deposit and withdrawal

of account (such as checking or savings) is always connected

to a specific type of business activity (such as loan processing or investment consulting) and has specific features particular to

current accounts, and progressive interest rates are a specific feature

of savings accounts. All the implementation chunks that deal with such tasks are subsumed under frameworks deposited in the

rks in the ADL, thus ensuring a

high degree of reuse. As application development progresses, the sedimentation of implementation chunks decreases, until all the

Material design pattern, which describes the interplay between application domain objects (such as an account) and

material metaphor.1,2 This metaphor—namely, that

defines the interdependencies between two (technical) objects: A tool is produced for

for example, an editor tool might enable users to work on an account (the material, for example,

for making deposits and withdrawals). Thus, a material and the user interface are not directly connected—rather, the tools

themselves handle all interactions. Implementing a tool requires knowledge about the nature of relevant materials; implementing a

material remains independent of specific tools. This means that when an application system‘s software architecture is in

Material pattern, user interface changes will not affect the material frameworks contained in the

The idea behind the Role pattern is that the core implementation of a customer

specific customer implementations are

in the business domain. If a role changes, it affects only that role‘s framework. The customer core framework in the

even more importantly—sedimentation is

Also, users and software engineers can use the same terminology and refer to the same entities, the roles. Just like

Material pattern, the Role pattern is completely integrated into the development life cycle and is another excellent

Style guides for framework development must take into account

It is important to precisely define the situations in which developers may reuse a particular tool. A

catalog, for example, might list all the tools available for reuse together with the prerequisites for using them. Otherwise,

there is the danger that tools might be used outside the intended context just because they have already been

ready for reuse. Experience has shown that problems arise in such cases, because adapting tools for

term use cancels out the benefits of reuse and destabilizes the business or even application layers.

material and role metaphors) that

guide how to use an application. The usage model must be standardized early in the development process; otherwise,

aneously build tools for several business domains. At

worst, this could necessitate the modification of application domain frameworks, thus slowing down or even reversing

Factor Application [8]. The remainder

yoke principles. In Section III, we present Related Work,

IJEDRCP1403033 International Jou

Challenge and Problem Statement. In Section IV, we present our Framework which discuss the methodology, outline. Finally, in

Section V, we provide some conclusion.

II. POKA-YOKE

Poka-yoke (ポカヨケ) [Poka yoke] is a Japanese term that means

lean manufacturing process that helps an equipment operator avoid (

defects by preventing, correcting, or drawing attention to human error

adopted, by Shigeo Shingo as part of the Toyota Production System. It was originally described as

"fool-proofing" (or "idiot-proofing") the name was changed to the milde

possibility or opportunity for passing on errors or making mistakes in a process. Poka Yoke is used:

• In the development or improvement of any process.

• When you want to make wrong actions impossible or m

• When there is a need to make it possible to reverse actions

• When you need to make it easier to discover that errors occur.

A. How to use it

• Identify the errors/mistakes which could be passed on

• Develop potential solutions to prevent errors

• Develop potential solutions to detect errors

• Implement solutions

B. Benefits

• Used to develop solutions to prevent mistakes before they occur or to detect errors and make

passed on to the next step of the process.

• Can be used in the development of a new process or in an existing process where rework to correct errors is hurting

process effectiveness and efficiency.

• Poka Yoke ensures that mistakes are not transferred to the next step of the process.

• Poka Yoke solutions are a simple and low cost way to reduce rework

C. Background

• Mistakes are human errors that result from incorrect intentions or executing correct intentions that result in un

outcomes.

D. Poka Yoke Examples [8]

III. RELATED WORK

In recent years, the research on applying Poka Yoke in software has received much attention [2] [9] [11] [12] [13]. Harry

Robinson introduced poka-yoke (mistake-proofing) into Hewlett Packard‘s software process and he claims they have been able to

prevent literally hundreds of software localization defects from reaching their customers [9]. As per Gojko Adzic, author of

Impact Mapping ―software classes should not allow us to proceed and blow up when something goes wrong.Exceptions can be

an effective way of giving more documentation, but the signal should be clear and unambiguous, in order not to mislead users or

client-developers. Software must be designed to prevent a complete crash, even in the face of system failure. Auto

are a good example. It‘s not often that the power gets cut, but when it does, our users will surely appreciate that we saved most of

their workǁ [14]. Much of the research focus is for ZOC, quality control, identifying defects. However, the limitation that t

associated research brings is not applying Poka

figure 4.

© 2014 IJEDR | Conference Proceeding (NCETSE

l Journal of Engineering Development and Research (

allenge and Problem Statement. In Section IV, we present our Framework which discuss the methodology, outline. Finally, in

) [Poka yoke] is a Japanese term that means "mistake-proofing"[10]. A Poka

lean manufacturing process that helps an equipment operator avoid (yokeru) mistakes (Poka). Its purpose is to eliminate product

defects by preventing, correcting, or drawing attention to human errors as they occur. The concept was formalized, and the term

adopted, by Shigeo Shingo as part of the Toyota Production System. It was originally described as

proofing") the name was changed to the milder poka-yoke. Poka Yoke is used to eliminate the

possibility or opportunity for passing on errors or making mistakes in a process. Poka Yoke is used:

• In the development or improvement of any process.

• When you want to make wrong actions impossible or more difficult to do.

• When there is a need to make it possible to reverse actions – to ―undoǁ them – or make it harder to do what cannot be reversed

• When you need to make it easier to discover that errors occur.

/mistakes which could be passed on

Develop potential solutions to prevent errors

Develop potential solutions to detect errors

Used to develop solutions to prevent mistakes before they occur or to detect errors and make

passed on to the next step of the process.

Can be used in the development of a new process or in an existing process where rework to correct errors is hurting

process effectiveness and efficiency.

akes are not transferred to the next step of the process.

Poka Yoke solutions are a simple and low cost way to reduce rework

Mistakes are human errors that result from incorrect intentions or executing correct intentions that result in un

In recent years, the research on applying Poka Yoke in software has received much attention [2] [9] [11] [12] [13]. Harry

proofing) into Hewlett Packard‘s software process and he claims they have been able to

literally hundreds of software localization defects from reaching their customers [9]. As per Gojko Adzic, author of

software classes should not allow us to proceed and blow up when something goes wrong.Exceptions can be

giving more documentation, but the signal should be clear and unambiguous, in order not to mislead users or

developers. Software must be designed to prevent a complete crash, even in the face of system failure. Auto

. It‘s not often that the power gets cut, but when it does, our users will surely appreciate that we saved most of

 [14]. Much of the research focus is for ZOC, quality control, identifying defects. However, the limitation that t

search brings is not applying Poka- Yoke in entirety. In usability a sub-characteristic is errors which is shown in

© 2014 IJEDR | Conference Proceeding (NCETSE-2014) | ISSN: 2321-9939

rch (www.ijedr.org) 167

allenge and Problem Statement. In Section IV, we present our Framework which discuss the methodology, outline. Finally, in

proofing"[10]. A Poka-yoke is any mechanism in a

). Its purpose is to eliminate product

s as they occur. The concept was formalized, and the term

adopted, by Shigeo Shingo as part of the Toyota Production System. It was originally described as baka-yoke, but as this means

. Poka Yoke is used to eliminate the

possibility or opportunity for passing on errors or making mistakes in a process. Poka Yoke is used:

or make it harder to do what cannot be reversed

Used to develop solutions to prevent mistakes before they occur or to detect errors and make it impossible for them to be

Can be used in the development of a new process or in an existing process where rework to correct errors is hurting

Mistakes are human errors that result from incorrect intentions or executing correct intentions that result in unintended

In recent years, the research on applying Poka Yoke in software has received much attention [2] [9] [11] [12] [13]. Harry

proofing) into Hewlett Packard‘s software process and he claims they have been able to

literally hundreds of software localization defects from reaching their customers [9]. As per Gojko Adzic, author of

software classes should not allow us to proceed and blow up when something goes wrong.Exceptions can be

giving more documentation, but the signal should be clear and unambiguous, in order not to mislead users or

developers. Software must be designed to prevent a complete crash, even in the face of system failure. Auto-save features

. It‘s not often that the power gets cut, but when it does, our users will surely appreciate that we saved most of

 [14]. Much of the research focus is for ZOC, quality control, identifying defects. However, the limitation that the

characteristic is errors which is shown in

IJEDRCP1403033 International Jou

Figure 4: Usability Characteristics (Courtesy: Jakob Nielsen and Ben)

A. Challenge

The ever-increasing expansion of applications and users requirements make a steep rise in the scale and complexity of software,

which results in the decrease in the software quality. So it is a great challenge in software engineering to understand, meas

manage, control, and even to low the software complexity [3]. Software Product Line engineering aims at improving productivit

and decreasing realization times by gathering the analysis, design and implementation activities of a family of systems.

Variabilities are characteristics that may vary from a product to another. The main challenge in the context of the Software

Product Lines (PL) approach is to model and implement these Variabilities [4].

B. Problem Statements

The prior researches have not been able to uncover root cause of software quality issues. Existing methods focus on software

testing and some extreme programming approaches to reduce defects. Proposed method is to focus on software architecture and

building monitoring within the software product and services.

IV. FRAMEWORK

A. Methodology
We are going to examine each of the phases in software development life cycle and find out opportunities of improvements. We

will explore how things can be planned and designed upfront to avoid discov

challenges in software is quality, to understand this better we will find opportunities to inject product monitoring at the r

to capture the user experience, product quality and help us in alerting

Poka Yoke (a Japanese methodology primarily used in production to make the process mistake

making mistakes and if mistakes are made, they are caught early in the cyc

about this in the context of software product development (one of the references [3] have implemented this in Microsoft and h

had good success with this).

© 2014 IJEDR | Conference Proceeding (NCETSE

l Journal of Engineering Development and Research (

Figure 4: Usability Characteristics (Courtesy: Jakob Nielsen and Ben)

increasing expansion of applications and users requirements make a steep rise in the scale and complexity of software,

which results in the decrease in the software quality. So it is a great challenge in software engineering to understand, meas

manage, control, and even to low the software complexity [3]. Software Product Line engineering aims at improving productivit

and decreasing realization times by gathering the analysis, design and implementation activities of a family of systems.

ilities are characteristics that may vary from a product to another. The main challenge in the context of the Software

Product Lines (PL) approach is to model and implement these Variabilities [4].

n able to uncover root cause of software quality issues. Existing methods focus on software

testing and some extreme programming approaches to reduce defects. Proposed method is to focus on software architecture and

product and services.

We are going to examine each of the phases in software development life cycle and find out opportunities of improvements. We

will explore how things can be planned and designed upfront to avoid discovering issues late in the cycle. One of the major

challenges in software is quality, to understand this better we will find opportunities to inject product monitoring at the r

to capture the user experience, product quality and help us in alerting at the right time. We are going to leverage principles of

Poka Yoke (a Japanese methodology primarily used in production to make the process mistake-

making mistakes and if mistakes are made, they are caught early in the cycle). We have observed that very few people have talked

about this in the context of software product development (one of the references [3] have implemented this in Microsoft and h

© 2014 IJEDR | Conference Proceeding (NCETSE-2014) | ISSN: 2321-9939

rch (www.ijedr.org) 168

Figure 4: Usability Characteristics (Courtesy: Jakob Nielsen and Ben)

increasing expansion of applications and users requirements make a steep rise in the scale and complexity of software,

which results in the decrease in the software quality. So it is a great challenge in software engineering to understand, measure,

manage, control, and even to low the software complexity [3]. Software Product Line engineering aims at improving productivity

and decreasing realization times by gathering the analysis, design and implementation activities of a family of systems.

ilities are characteristics that may vary from a product to another. The main challenge in the context of the Software

n able to uncover root cause of software quality issues. Existing methods focus on software

testing and some extreme programming approaches to reduce defects. Proposed method is to focus on software architecture and

We are going to examine each of the phases in software development life cycle and find out opportunities of improvements. We

ering issues late in the cycle. One of the major

challenges in software is quality, to understand this better we will find opportunities to inject product monitoring at the right place

at the right time. We are going to leverage principles of

-proof, this prevent people from

le). We have observed that very few people have talked

about this in the context of software product development (one of the references [3] have implemented this in Microsoft and have

IJEDRCP1403033 International Jou

Figure 5: Framework for updated Softwar

B. Outline
Figure 5 shows how to provide emphasis on investing in the Software Architecture before the design is started. While developi

Software Architecture, adequate attention is to be provided to the Software Reliability, Scale, User experience and making it

safe based on Poka Yoke Principles. One of the additional outputs the software Architecture will be the details for software

product monitoring. Product monitoring is something that should be thought through from day one and should not be an

afterthought in the final phase of software development or deployment. Right set of monitoring helps us know how the software

system is performing in various condition and can help in alerting as needed. The details and expectations of product monitor

are fed in the design and the final design needs to come out with these details. The same are ensured in all the user experience,

algorithm and logic coding. In the verification and validation phase, all these monitoring needs to be validated to ensure ri

are captured for the right set of events.

V. CONCLUSION

The basic idea behind developing this new model is to have high quality software products and services that can be developed

faster, cheaper and in better way, it can scale with demand in various scen

failing safe for SDLC bottlenecks which arise in both conventional and Agile Software Development. Proposed method is to

focus on software architecture and building monitoring within the software produc

REFERENCES

[1] Bass, Clements, Kazman, Software Architecture in Practice, 2nd ed. Addison

[2] Weifeng Pan,"Applying Complex Network Theory to Software Structure Analysis

Engineering and Technology, Vol.60, pp.1636

[3] Mukesh Jain, Delivering Successful Projects with TSP(SM) and Six Sigma: A Practical Guide to Imp

Software Process(SM)

[4] W.M.Abdelmoez, A.H.Jalali, K.Shaik, T. Menzies and H.H. Ammar,

for Product Line Architectures", In.Proc.of.International Conference on Communication, Computer and Power (Iccc

Muscat, February 15-18, 2009

[5] Indika Meedeniya, ―Robust Optimization of Automotive Software Architecture", In.proc.of AutoCRC Technical

Conference, 2011

© 2014 IJEDR | Conference Proceeding (NCETSE

l Journal of Engineering Development and Research (

Figure 5: Framework for updated Software Development Life Cycle

Figure 5 shows how to provide emphasis on investing in the Software Architecture before the design is started. While developi

Software Architecture, adequate attention is to be provided to the Software Reliability, Scale, User experience and making it

safe based on Poka Yoke Principles. One of the additional outputs the software Architecture will be the details for software

product monitoring. Product monitoring is something that should be thought through from day one and should not be an

t in the final phase of software development or deployment. Right set of monitoring helps us know how the software

system is performing in various condition and can help in alerting as needed. The details and expectations of product monitor

he design and the final design needs to come out with these details. The same are ensured in all the user experience,

algorithm and logic coding. In the verification and validation phase, all these monitoring needs to be validated to ensure ri

The basic idea behind developing this new model is to have high quality software products and services that can be developed

faster, cheaper and in better way, it can scale with demand in various scenarios, can deliver outstanding user experience and be

failing safe for SDLC bottlenecks which arise in both conventional and Agile Software Development. Proposed method is to

focus on software architecture and building monitoring within the software product and services.

Bass, Clements, Kazman, Software Architecture in Practice, 2nd ed. Addison-Wesley, 2003

Weifeng Pan,"Applying Complex Network Theory to Software Structure Analysisǁ, World Academy of Science,

Engineering and Technology, Vol.60, pp.1636-1642, 2011

Mukesh Jain, Delivering Successful Projects with TSP(SM) and Six Sigma: A Practical Guide to Imp

W.M.Abdelmoez, A.H.Jalali, K.Shaik, T. Menzies and H.H. Ammar, ―Using Software Architecture Risk Assessment

for Product Line Architectures", In.Proc.of.International Conference on Communication, Computer and Power (Iccc

Robust Optimization of Automotive Software Architecture", In.proc.of AutoCRC Technical

© 2014 IJEDR | Conference Proceeding (NCETSE-2014) | ISSN: 2321-9939

rch (www.ijedr.org) 169

e Development Life Cycle

Figure 5 shows how to provide emphasis on investing in the Software Architecture before the design is started. While developing

Software Architecture, adequate attention is to be provided to the Software Reliability, Scale, User experience and making it fail

safe based on Poka Yoke Principles. One of the additional outputs the software Architecture will be the details for software

product monitoring. Product monitoring is something that should be thought through from day one and should not be an

t in the final phase of software development or deployment. Right set of monitoring helps us know how the software

system is performing in various condition and can help in alerting as needed. The details and expectations of product monitoring

he design and the final design needs to come out with these details. The same are ensured in all the user experience,

algorithm and logic coding. In the verification and validation phase, all these monitoring needs to be validated to ensure right data

The basic idea behind developing this new model is to have high quality software products and services that can be developed

arios, can deliver outstanding user experience and be

failing safe for SDLC bottlenecks which arise in both conventional and Agile Software Development. Proposed method is to

Wesley, 2003

ǁ, World Academy of Science,

Mukesh Jain, Delivering Successful Projects with TSP(SM) and Six Sigma: A Practical Guide to Implementing Team

Using Software Architecture Risk Assessment

for Product Line Architectures", In.Proc.of.International Conference on Communication, Computer and Power (Icccp'09)

Robust Optimization of Automotive Software Architecture", In.proc.of AutoCRC Technical

IJEDRCP1403033 International Jou

[6] Ahmed Seffah, Mohammad Donyaee, Rex B. Kline and Harkirat K. Padda ,"Usability measurement and m

consolidated model", Software Quality Journal,Vol.14, pp.159

[7] Pradip Peter Dey, ―Strongly Adequate Software Architecture", World Academy of Science, Engineering and

Technology, Vol.60, pp.366-369, 2011

[8] The Pokayoke Guide to Developing S

[9] Harry Robinson, ―Using Poka-Yoke Techniques for Early Defect Detection

Software Testing Analysis and Review (STAR'97)

[10] Shigeo Shingo, Zero Quality Control: Source Inspection and the P

[11] G. Gordon Schulmeyer, Zero Defect Software. McGraw

[12] James Tierney, Eradicating mistakes in your software through poka yoke. MBC Video

[13] Boris Beizer, Software Testing Techniques, 2nd ed. Van Nostrand Re

[14] Gojko Adzic, Impact Mapping: Making a big impact with software products and projects, Published by Provoking

Thoughts,1 October 2012, ISBN: 978

[15] Revision control systemǁ, http://git-scm.com/

[16] Chung, L., Nixon, B., Yu, E., and Mylopoulos, J.:

Academic Publishers, 2000).

[17] Klein, M., Ralya, T., Pollak, B., Obenza, R., and Gonzlez Harbour, M.:

analysis‘ (Kluwer Academic Pub, 1993)

© 2014 IJEDR | Conference Proceeding (NCETSE

l Journal of Engineering Development and Research (

Ahmed Seffah, Mohammad Donyaee, Rex B. Kline and Harkirat K. Padda ,"Usability measurement and m

consolidated model", Software Quality Journal,Vol.14, pp.159–178,2006

Strongly Adequate Software Architecture", World Academy of Science, Engineering and

369, 2011

The Pokayoke Guide to Developing Softwareǁ, http://pokayokeguide.com/

Yoke Techniques for Early Defect Detectionǁ, Sixth International Conference on

Software Testing Analysis and Review (STAR'97)

Shigeo Shingo, Zero Quality Control: Source Inspection and the Poka-yoke System, Productivity Press, pp.45

G. Gordon Schulmeyer, Zero Defect Software. McGraw-Hill, Inc.

James Tierney, Eradicating mistakes in your software through poka yoke. MBC Video

Boris Beizer, Software Testing Techniques, 2nd ed. Van Nostrand Reinhold, pp. 3

Gojko Adzic, Impact Mapping: Making a big impact with software products and projects, Published by Provoking

Thoughts,1 October 2012, ISBN: 978-0-9556836-4-0

scm.com/

Chung, L., Nixon, B., Yu, E., and Mylopoulos, J.: ‗Non-functional requirements in software engineering‘ (Kluwer

Klein, M., Ralya, T., Pollak, B., Obenza, R., and Gonzlez Harbour, M.: ‗A practitioner‘s handbook for real

analysis‘ (Kluwer Academic Pub, 1993)

© 2014 IJEDR | Conference Proceeding (NCETSE-2014) | ISSN: 2321-9939

rch (www.ijedr.org) 170

Ahmed Seffah, Mohammad Donyaee, Rex B. Kline and Harkirat K. Padda ,"Usability measurement and metrics: A

Strongly Adequate Software Architecture", World Academy of Science, Engineering and

, Sixth International Conference on

yoke System, Productivity Press, pp.45

Gojko Adzic, Impact Mapping: Making a big impact with software products and projects, Published by Provoking

functional requirements in software engineering‘ (Kluwer

A practitioner‘s handbook for real-time systems

