Modeling of a Glass Tank Furnace Using Artificial Neural Network

A. Banerjee, D. Mohanty, S. Khanam

Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, Pin-247 667, India.

Department of Ceramic Engineering, National Institute of Technology, Rourkela, Pin-769 008, Orissa, India.

Abstract: Modeling of an Industrial side port regenerative glass tank furnace for float glass manufacturing has been done using a Radial Basis Function (RBF) neural network to connect various input and output parameters applying conjugate gradient learning. RBF neural network is an intelligent technique that can model non-linear problems by learning from the operating data and can be used for the prediction of output parameters. The glass tank furnace is a complex unit with a large number of input and output parameters such as 54 inputs and 44 outputs. In the present work a methodology has been developed to identify the most important input-output parameters using co-linearity analysis of the raw data obtained from the industry as well as by carrying out sensitivity analysis on the developed RBF neural network model. After achieving sufficient reduction in the number of parameters, the RBF network is reconfigured to estimate the output parameters with Normalized Mean Square Error (NMSE) and correlation coefficient (r) as performance criteria. The NMSE and ‘r’ values of the output parameters range from 0.0572-1101.2768 and 0.022-0.9787 respectively.

Keywords: Glass tank furnace; RBF model; Neural network; Co-linearity analysis.

I. INTRODUCTION

The role of Glass Tank Furnace in a float line is monumental for obtaining the desired grade of glass manufacturing. However, operating the furnace efficiently is cumbersome due to the existence of a large number of operating parameters. This also poses problem in modeling the unit as the input parameters are correlated nonlinearly with output parameters. Thus, to develop an effective and efficient model it is necessary that only pertinent input-output parameters should be screened out and a non-linear multivariable relationship between these be established. This can be effectively done using artificial neural network (ANN) models.

An exhaustive literature review shows that a considerable number of CFD based models are available for glass tank furnaces to simulate different aspects of glass production [1]-[7]. However, the same is not true for ANN based models. It appears from the available literature, that only one NN model is present that has been used for predicting glass furnace outputs to meet production schedules [8] which does not come in the domain of present study. Thus, it can be safely concluded that ANN models have hardly been used for To bring turbulence to induce mixing, bubbler are used and to give uniform temperature, mild electric heating is done in the glass melter.

Downstream of the ‘neck’ region there is a refiner section where removal of the dissolved and trapped gases in the melt takes place. Refining agents, which are involved in the equilibrium redox reactions producing or consuming gases, modeling complex glass tank furnaces where the demand of production, for different colored glasses, changes with time. The absence of ANN models for Glass Tank furnaces in open literature has provided the required motivation to develop ANN model using data obtained from a typical Glass Industry situated in the Northern part of India.

A. Glass Tank Furnace

Fig. 1 shows the melter section of a Glass Tank furnace in a float line. It has 4 main sections such as batch feeding section, Regenerator block, bubbler area and neck. Some of the input (I/P) and output (O/P) variables, as given in Table 1, that are associated with different sections of the melter are provided in the table presented with Fig. 1.

The glass melter section is a complex unit due to the fact that a large number of unit operation as well as reactions take place in this section. In the melter section, the raw materials coming from batch preparation unit are charged via four batch chargers situated at the rear. The batch feeding section is known as the dog house. On both sides of the fusion pool, there are burners and their ports are positioned for efficient injection of fuel for combustion inside the chamber. The furnace is fired with furnace oil at alternate cycles of about 20 minutes from each side of fusion pool. Two regenerators (Block A & B) along the left and right side of the furnace function for preheating the combustion air and recovering heat from the exhaust gases. The regenerators are constructed with refractory bricks and the temperature inside the regenerator chamber is that of the exhaust gas. Heat is transferred to the reactants and glass melts both by convection and radiation. The reactions in the feed material take place on entering the feed zone and it forms a melt at around 1400-1500°C. The fining or primary removal of bubbles in molten glass is achieved by the operation of gas bubblers which also bring turbulence in the melt and induce mixing. The melt flows around the ‘neck’ (a narrow region downstream of the melting area) where the forced homogenization of glass takes place through mechanical stirring. One would find the neck region water cooled with auxiliary equipment to improve the quality of melt glass.

are usually added to the batch in order to remove undesirable bubbles from the glass melt. Proper temperature profile needs to be maintained in this section for better refining efficiency. The temperature in the refiner varies from 1300°C to 1100°C as the float line progresses. From the refiner section the glass melt flows to the tin bath section.
Amongst the input parameters the oil flow, secondary air flow, Batch% (the amount of fresh feed), pull (Throughput), chimney dampener opening are main parameters of interest for combustion in furnace. The various output parameters such as dog house temperature, crown temperature, refiner temperature, canal temperature, feed end temperature and regeneration flue gas temperature are the result of combustion to transfer heat to the glass melt. A proper temperature profile in the glass melting tank is essential to meet the quality of the glass produced. In the tank the temperature first increases and then decreases as feed moves from feed end towards the refiner. Thus, a maximum temperature is found at around the middle of the furnace. This is done to promote the formation of circulation loops in the glass melt which enhances mixing and leads to formation of a uniform melt with desired properties. The same can be seen from the fuel flows which are highest near the middle port. Crown temperatures determine radiative heat transfer to the glass melt and the unmelted batch. The amount of heat required to melt a fresh batch is more as compared to melt recycled glass (cullet). The throughput is limited to the acceptable maximum temperatures in the furnace which is dictated by the selection of the associated refractory for the furnace walls.

![Schematic diagram of the Melter section of Glass Tank furnace](image)

Fig.1 Schematic diagram of the Melter section of Glass Tank furnace

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Details</th>
<th>Parameters</th>
<th>I/P no.</th>
<th>O/P no.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FCT</td>
<td></td>
<td></td>
<td>Q3-O10</td>
</tr>
<tr>
<td></td>
<td>DHT, FBT</td>
<td></td>
<td>O1-O2, O11-O17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP</td>
<td>I38-I48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SA, CDO, RFGT, MFGT, CBT</td>
<td>I20-I25, I54</td>
<td>O28-O41, O43, O44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BCRPM, Batch %</td>
<td>I51</td>
<td>I57</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 List of input-output parameters for Float Glass Melting Furnace

<table>
<thead>
<tr>
<th>INPUT PARAMETER</th>
<th>OUTPUT PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/P No.→ Oil Flow(m³/hr)</td>
<td>O/P parameter: Dog house Temperature (DHT) (°C)</td>
</tr>
<tr>
<td>I1</td>
<td>I2</td>
</tr>
<tr>
<td>DHT</td>
<td>TD1</td>
</tr>
<tr>
<td>I/P No.→ % Valve O.P. for oil flow</td>
<td>O/P parameter: Furnace Crown Temperature(FCT) (°C)</td>
</tr>
<tr>
<td>I7</td>
<td>I8</td>
</tr>
<tr>
<td>FCT</td>
<td>T1</td>
</tr>
<tr>
<td>I/P No.→ Burner Port Pressure(BPP)(kg/cm²)</td>
<td>O/P parameter: Furnace Bottom Temperature(FBT) (°C)</td>
</tr>
<tr>
<td>I13</td>
<td>I14</td>
</tr>
<tr>
<td>BPP</td>
<td>I54</td>
</tr>
</tbody>
</table>
The Radial Basis Function neural network (RBF NN) with the Gaussian activation function is among the best and most widely used feed forward universal approximators for ANN. There are a total of 54 I/P and 44 O/P for this section as given in Table 1. Due to limitation on page number the discussion is restricted. In this paper, operating data of the glass tank furnace has been collected from a nearby glass industry.

For the development of a RBF NN model a considerable amount of input output data of the system is required. For this purpose, operating data of the glass tank furnace has been collected from a nearby glass industry.

In this paper, the stop and performance criteria for the RBF networks are defined. The methodology to identify the most important input-output parameters based on co-linearity analysis of the raw data as well as sensitivity analysis on the basis of developed neural network model is also presented. Finally, a RBF network is developed to estimate the important output parameters based on pertinent input parameters screened using above technique.

For the development of a RBF NN model a considerable amount of input output data of the system is required. For this purpose, operating data of the glass tank furnace has been collected from a nearby glass industry.

In this paper, the stop and performance criteria for the RBF networks are defined. The methodology to identify the most important input-output parameters based on co-linearity analysis of the raw data as well as sensitivity analysis on the basis of developed neural network model is also presented. Finally, a RBF network is developed to estimate the important output parameters based on pertinent input parameters screened using above technique.

A. Stop Criterion for training

The learning curve for supervised learning is given by the plot of mean square error (MSE) versus number of iterations. The MSE is given by

$$\text{MSE} = \frac{1}{NP} \sum_{j=0}^{P} \sum_{i=0}^{N} (d_{ij} - y_{ij})^2$$ (4)

II. DEVELOPMENT OF RBF NN MODEL

The Radial Basis Function neural network (RBF NN) with the Gaussian activation function is among the best and most widely used feed forward universal approximators for ANN. There are a total of 54 I/P and 44 O/P for this section as given in Table 1. Due to limitation on page number the discussion is restricted. In this paper, operating data of the glass tank furnace has been collected from a nearby glass industry.

In this paper, the stop and performance criteria for the RBF networks are defined. The methodology to identify the most important input-output parameters based on co-linearity analysis of the raw data as well as sensitivity analysis on the basis of developed neural network model is also presented. Finally, a RBF network is developed to estimate the important output parameters based on pertinent input parameters screened using above technique.

A. Stop Criterion for training

The learning curve for supervised learning is given by the plot of mean square error (MSE) versus number of iterations. The MSE is given by

$$\text{MSE} = \frac{1}{NP} \sum_{j=0}^{P} \sum_{i=0}^{N} (d_{ij} - y_{ij})^2$$ (4)
The MSE will keep decreasing in the training set, during supervised learning with the increase in the number of iterations but may start to increase in the cross validation test set also. This happens when the network starts "memorizing" the training patterns. The stopping criterion for training is given by the minimum MSE in the Cross validation set.

B. Performance Criteria for Testing

The performance of the network is defined by two parameters: normalized mean square error (NMSE), which should be minimum and correlation coefficient (r), which should have a value near unity. These two parameters are defined as:

\[
NMSE = \frac{PN(MSE)}{\sum_{i=0}^{P} \sum_{j=0}^{N} d_{ij}^2 - (\sum_{i=0}^{N} d_{ij})^2 \sqrt{N}}
\]

\[
r = \frac{\sum_{i=0}^{N} (y_{i} - \bar{y})(d_{i} - \bar{d})}{\sum_{i=0}^{N} (y_{i} - \bar{y})^2 \sum_{i=0}^{N} (d_{i} - \bar{d})^2}
\]

III. METHODOLOGY FOR MODEL DEVELOPMENT

The method adopted for model development is given in the following steps:

I. The data collected is tested against co-linearity to remove dependent input and output parameters.

IV. RESULTS AND DISCUSSION

In the following sections results of two different RBF NN are discussed.

A. RBF NN-1 Model

The input and output parameters screened using co-linearity test, discussed in Section IIIA, is now used for the development of the model RBF NN-1 with the topology (TOPO-1). This topology consists of 40, 40, 24 and 5100 nodes in input layer, nodes in hidden layer, nodes in output layer and no. of epochs, respectively. The model has 40 inputs and 24 outputs.

The number of nodes in the hidden layer is found by trial and error procedure such that the minimum MSE in the cross validation set is 0.03 during the training phase. It corresponds to the best possible ‘NMSE’ and ‘r’ values for the output parameters during the testing phase of TOPO-1 as given in Table 2. It shows that ranges of ‘NMSE’ and ‘r’ are 0.0826-1393.857 and -0.092-0.9591, respectively.

B. Sensitivity Analysis

II. RBF NN model is established based on the screened input and output variables obtained from Step-I.

III. Based on the developed RBF NN model (in Step-II) a sensitivity analysis is performed to select important input parameters which affect the output most. Based on this analysis a set of important input parameters are selected.

IV. Based on the input parameters screened in Step-III and screened independent output parameters from Step-I a revised RBF NN is developed.

A. Co-linearity Analysis

The input as well as outputs data sets should be independent. To confirm this, the given input and output data sets are tested against co-linearity to eliminate dependent variables. For a given data set (input or output), correlation coefficient, r, is computed for each variable with respect to the other. In fact, variables I36 and I37 are not considered for co-linearity test as these are constant parameters. In case, the variable has a correlation coefficient equal to 0.9 or more (maximum is 1) with respect to the other, one parameter out of the two is dropped from set of parameters. In such cases, if one of the parameter is important as discussed in Section II, it is kept whereas the other is dropped. Based on value of r the parameters considered are I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14, I15, I16, I17, I18, I19, I20, I21, I22, I23, I24, I25, I26, I27, I28, I29, I30, I31, I32, I33, I38, I49, I50, I51, I52, I53 and I54. However, I36 and I37 are not considered for this analysis. It shows that total 12 parameters are dropped. Thus, total 40 input parameters out of 54 are selected for further analysis. Similarly, after co-linearity analysis 24 output parameters out of 44 are considered. The dropped output parameters are O10, O12, O13-O17, O20, O24, O29-O34 and O36-O40.

In order to further refine the number of inputs for the final RBF NN model to be developed, sensitivity analysis is carried out using RBF NN-1. In this method, first the mean and standard deviation is computed for each input parameter. The input is varied from (mean - standard deviation) to (mean + standard deviation) and the corresponding output is computed using RBF NN-1. These computed outputs are then used to evaluate the sensitivity coefficient between each input and output parameters.

In order to select the input parameters which affect the output parameters most the mean of the sensitivity matrix is computed, which is 0.1335. The input parameters, which have sensitivity coefficient greater than mean value, are considered for analysis otherwise dropped. In this analysis the important parameters discussed in Section II are accounted irrespective of the value of sensitivity coefficient. Thus, dropped input parameters are I7-I12, I26, I27, I29, I30, I32, I33, I38, I49 and I50. In the present work a parameter in considered for further analysis if it is affecting more than 30% of total outputs, which is 8 outputs from 24. The number of input and output parameters after sensitivity analysis reduces to 25 and 24, respectively.

C. RBF NN-2 Model
A final RBF NN model is developed with the topology (TOPO-2). It has 25, 28, 24 and 5100 nodes in input layer, nodes in hidden layer, nodes in output layer and no. of epochs, respectively. The ‘NMSE’ and ‘r’ values for the output parameters in testing phase of RBF NN-2 are given in Table 3. It shows that ranges of ‘NMSE’ and ‘r’ are 0.0515-1.1011.277 and -0.329-0.9787, respectively. Further, if average value of ‘r’ is computed from results shown in Table 2 and 3 it is found as 0.63 for both models i.e. RBF NN-1 and RBF NN-2. It shows that 25 I/P parameters selected for RBF NN-2 correlate the output parameters is the same manner as that is predicted by RBF NN-1 with 40 I/P parameters. Thus, the present methodology can be effectively used to screen best input which can control a given output.

Table 2 NMSE and r values of the testing data for RBF NN-1

<table>
<thead>
<tr>
<th>O1</th>
<th>O2</th>
<th>O3</th>
<th>O4</th>
<th>O5</th>
<th>O6</th>
<th>O7</th>
<th>O8</th>
<th>O9</th>
<th>O11</th>
<th>O18</th>
<th>O19</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMSE</td>
<td>0.0826</td>
<td>0.9962</td>
<td>1.9936</td>
<td>0.8641</td>
<td>0.4546</td>
<td>1.3900</td>
<td>0.9611</td>
<td>1.1884</td>
<td>0.5209</td>
<td>0.2631</td>
<td>17.6428</td>
</tr>
<tr>
<td>r</td>
<td>0.9591</td>
<td>0.5349</td>
<td>0.7082</td>
<td>0.6053</td>
<td>0.8881</td>
<td>0.3399</td>
<td>0.2676</td>
<td>0.4867</td>
<td>0.8528</td>
<td>0.8852</td>
<td>0.8134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O21</th>
<th>O22</th>
<th>O23</th>
<th>O25</th>
<th>O26</th>
<th>O27</th>
<th>O28</th>
<th>O35</th>
<th>O41</th>
<th>O42</th>
<th>O43</th>
<th>O44</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMSE</td>
<td>0.7838</td>
<td>1.3652</td>
<td>0.1531</td>
<td>0.7419</td>
<td>2.1423</td>
<td>1.1698</td>
<td>1.1480</td>
<td>1.1745</td>
<td>1.4056</td>
<td>1393.8573</td>
<td>0.1150</td>
</tr>
<tr>
<td>R</td>
<td>0.8625</td>
<td>0.8897</td>
<td>0.9362</td>
<td>0.5214</td>
<td>0.9284</td>
<td>0.7413</td>
<td>-0.074</td>
<td>-0.092</td>
<td>0.1428</td>
<td>0.2262</td>
<td>0.9503</td>
</tr>
</tbody>
</table>

Table 3 NMSE and r values of the testing data for RBF NN-2

<table>
<thead>
<tr>
<th>O1</th>
<th>O2</th>
<th>O3</th>
<th>O4</th>
<th>O5</th>
<th>O6</th>
<th>O7</th>
<th>O8</th>
<th>O9</th>
<th>O11</th>
<th>O18</th>
<th>O19</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMSE</td>
<td>0.0572</td>
<td>0.9324</td>
<td>0.9653</td>
<td>1.8751</td>
<td>0.3983</td>
<td>1.1593</td>
<td>0.4509</td>
<td>0.9344</td>
<td>0.4922</td>
<td>0.2121</td>
<td>9.0307</td>
</tr>
<tr>
<td>r</td>
<td>0.9736</td>
<td>0.5439</td>
<td>0.4441</td>
<td>-0.329</td>
<td>0.8804</td>
<td>0.3920</td>
<td>0.7993</td>
<td>0.4761</td>
<td>0.7914</td>
<td>0.9033</td>
<td>0.8870</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O21</th>
<th>O22</th>
<th>O23</th>
<th>O25</th>
<th>O26</th>
<th>O27</th>
<th>O28</th>
<th>O35</th>
<th>O41</th>
<th>O42</th>
<th>O43</th>
<th>O44</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMSE</td>
<td>0.7415</td>
<td>18.8030</td>
<td>0.2765</td>
<td>0.0515</td>
<td>0.1298</td>
<td>0.2136</td>
<td>1.0751</td>
<td>1.0187</td>
<td>1.3173</td>
<td>1101.2768</td>
<td>0.3274</td>
</tr>
<tr>
<td>r</td>
<td>0.6116</td>
<td>0.8979</td>
<td>0.9332</td>
<td>0.9787</td>
<td>0.9707</td>
<td>0.9212</td>
<td>0.0220</td>
<td>0.1658</td>
<td>0.1192</td>
<td>0.0394</td>
<td>0.8340</td>
</tr>
</tbody>
</table>

V. CONCLUSION

The multi-input, multi-output system characterizing the operation in a glass tank furnace has been modeled using RBF neural network approach. A methodology has been developed to reduce important input parameters from 54 to 44 and output parameters from 25 to 24, using co-linearity and sensitivity analysis. The NMSE and r ranges from 0.0515-18.803 and -0.329-0.9787, respectively, for all parameters. The developed model can be further used to carry out parametric study to find out the most effective inputs for a given output.

NOMENCLATURE

- \(d_i \): Desired response for \(i \)th exemplar
- \(d_{ij} \): Desired output for exemplar ‘\(i \)’ at processing element ‘\(j \)’
- \(\bar{d} \): Mean desired value for the dataset considered
- \(N \): Number of exemplars in the dataset
- \(P \): Number of nodes in output layer
- \(r \): Coefficient of correlation
- \(y_i \): Network output for exemplar ‘\(i \)’
- \(y_{ij} \): Network output for exemplar ‘\(i \)’ at processing element ‘\(j \)’
- \(\bar{y} \): Mean network output value for the dataset considered

REFERENCES

About Authors

Abhik Banerjee is an M.Tech in Chemical Engineering from IIT Roorkee with specialisation in computer aided process plant design. He is B.Tech. (Chemical Engineering) from Haldia Institute of Technology, Haldia, West Bengal. He has around 3 years of work experience in Ammonia and Ethylene plant operations. His area of interest includes heat transfer, modelling and simulation. He has worked on model development and validation using neural networks and computational fluid dynamics for industrial problems.

Debajyoti Mohanty obtains Bachelor of Technology in Ceramic Engineering (First Class) from National Institute of Technology (NIT) Rourkela, Orissa, India in 2011. He is working as a Senior Engineer in a renowned ceramic industry M/s Somany Ceramics Ltd., Bahadurgarh, Haryana where he acquired more than two years R&D experience. He has carried out many R&D projects in M/s Somany Ceramics Ltd. Mr. Mohanty published one article on “Development of input output relationship for self-healing Al₂O₃/SiC ceramic composites with Y₂O₃ additive using design of experiments” in Ceramic International Journal.

Shabina Khanam is working as Assistant professor in Chemical Engineering Department of IIT Roorkee. The author has completed B.Tech degree from AMU Aligarh, Aligarh, Uttar Pradesh, India in 2000 and M.Tech and Ph.D. degree from IIT Roorkee, Uttarakhand, India in 2002 and 2007, respectively. The author’s major field of study is process integration, energy management and modeling and simulation. She has 7 years experience in teaching and research. She has supervised 1 Ph.D., 9 M.Tech and many more B.Tech projects. 4 Ph.D and 5 M.Tech theses are in pipe line. She has published more than 20 papers in different refereed journals.