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Abstract - In this paper, Hydromagnetic instability of visco-elastic Walter’s (modal B´) nanofluid layer heated from below 

is numerically and analytically described. For this Perturbation method, Normal mode technique and the dispersion 

relation has been used.. The effects of the various physical parameters of the system, namely Lewis number, modified 

diffusivity ratio, nano particle Rayleigh number and magnetic field on the stationary convection have been analyzed both 

analytically and graphically. The Lewis number, modified diffusivity ratio and nano particle Rayleigh number are found 

to have destabilizing effect, whereas magnetic field has a stabilizing effect for stationary convection. 
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NOMENCLATURE 

a           dimensionless resultant wave number                                                 Greek symbols 

d           thickness of nanofluid layer                                               𝛼      Thermal expansion coefficient 

𝐷𝐵        Brownian diffusion coefficient                                     𝜇       Viscosity 

𝐷𝑇        Thermophoretic diffusion coefficient                                               𝜀        Porosity 

𝜌          Density of nanofluid                                                                             𝜇𝑒       Magnetic permeability 

g           acceleration due to gravity                                                                  𝜇´       Kinematic visco-elasticity 

𝜂         Fluid electrical resistivity                                                                  (𝜌𝑐)𝑝   Heat capacity of nanoparticles 

n    growth rate of disturbances                                                               (𝜌𝑐)𝑓   Heat capacity of base fluid 

𝑘1          medium permeability                                                                           𝜑         volume fraction nanoparticle 

q            velocity vector                                                     𝜌𝑝         density of nanoparticles 

𝑅𝑎          Rayleigh number                          𝜌𝑓          density of base fluid 

𝑅𝑚        Density Rayleigh number                                                                     𝑘            Thermal diffusivity 

𝑅𝑛          Nano particle Rayleigh number                                                 𝜔           dimensionless frequenccy 

T           Temperature                                                                                           Q           Chandrasekhar number 

𝑇1          reference temperature                                                                            Superscripts 

t             time                              `           non-dimensionless variables 

(u, v, w)  Velocity component                                                      ″            perturbed quantities 

(x, y, z)    space co-ordinate                                       Subscripts 

H            magnetic field                  p              particle 

𝐿𝑒            Lewis number                                                                                        r               fluid 

𝑁𝐴           Modified diffusivity ratio                  0              lower boundary 

𝑁𝑩           Modified particle-density increment                                           1              upper boundary 

𝑃𝑟1
            Prandtl number                  

𝑃𝑟2
           Magnetic Prandtl number 

p              Hydrostatic pressure 

 

 

I. INTRODUCTION

A colloidal mixture of nano sized particles in base fluid makes nanofluid. Choi [1] was the first person to use the term nanofluid. 

The thermal instability of nanofluid is enhanced, when a small amount of nano-sized particles are added to the base fluid. Masuda 

et al. [2] first showed that the thermal conductivity of nanofluids was enhanced due to the presence of nano particles. Eastman 

et al. [3] investigated that if 0.3% of copper nano particles were added in ethylene glycol would increase 40%. Xuan and Li [4] 

observed that the suspended nano particles remarkably enhance heat transfer and the Cu-water nanofluid has larger heat transfer 

coefficient than that of the original base liquid under the same Reynolds number. Due to the thermal conductivity enhancement 

of the nanofluids, they have a wide range of industrial applications especially in the process where cooling is of primary interest. 

Nano particles materials may be taken as metal carbides (SiC), oxide ceramics (𝐴𝑙2𝑂3, 𝐶𝑢𝑂), nitrides (AlN, SiN) or metals (Cu, 

Al) etc. and base fluids are water, ethylene or tri-ethylene-glycols and other coolants, oil and other lubricants, bio-fluids, polymer 

solutions, other common visco-elastic fluids. The dimension of nano particles is about to 100 nm.Tzou [5] was the first scientist 
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to use the modal of Buongiorno [6] to investigate the instability problems in nanofluid using the method of eigen function 

expansion. He observed that the regular fluids were more stable than nanofluids. Nield and Kuznetsov [7] discussed the thermal 

instability problem for the nanofluid layer, and it is found that the stability of the nanofluids depended on the distribution of the 

nano particles on the boundaries of the layer. The onset of convection in a horizontal layer of nanofluids uniformly heated from 

below (Bénard convection) based upon Buongiorno’s modal under various assumptions have been discussed by Nield and 

Kuznetsov [8], Kuznetsov and Nield [9], Yadav et al. [10], Chand et al. [11], Chand [12], Chand and Rana [13], and Rana et al. 

[14]. There are a large number of technological applications in geophysics, food processing, oil reservoir modeling, petroleum 

industry, bio-mechanics, building of thermal insulations and nuclear reactors of thermal instability in a porous medium. Lapwood 

[15] had studied the convective flow in a porous medium using linearized stability theory. Wooding [16] had discussed the 

Rayleigh instability of a thermal boundary layer in the flow through a porous medium. Nield and Kuznetsov [17] investigated 

thermal instability in a horizontal nanofluid layer in porous medium by Darcy modal. Kuznetsov [18] studied the same by 

Brinkman modal. The oscillating convection in a Darcy porous medium have discussed by Chand and Rana [19] and found that 

“Principal of exchange of stabilities” is not valid.The above literature related with the study of nanofluids as Newtonian fluids. 

But the growing importance of non-Newtonian fluids in technology and industries, the discussion of such types of fluids are 

desirable. Convection of non-Newtonian fluids has important part in various processes in the chemical and material industries, 

in the extrusion of polymer fluids, in geophysical fluid dynamics, chemical technology. Bhatia and Steiner [20] have discussed 

the thermal instability of visco-elastic fluids. There are many visco-elastic fluids which cannot be characterized by Maxwell 

constitutive relations. One such class of visco-elastic fluids is Walter’s (modal B´) fluid. Walter’s [21] noted that the mixture of 

polymethyl methacrylate and pyridine at 250 C containing 30.5gm of polymer per liter with density 0.98 gm per liter behaves 

nearly as the Walter’s (modal B´) fluid.The important role of magnetic field, in the applications of geophysics (e.g. enhanced 

oil recovery from underground reservoirs) gives the motivation to investigate the thermal instability of visco-elastic nanofluids 

in a magnetic field. Gupta et al. [22] investigated the effects of magnetic fields on the thermal instability of bottom heavy 

nanofluids, and found that the magnetic field increased the thermal instability of nanofluid layer. Yadav et al. [23] investigated 

numerically the effect of magnetic field on the onset of nanofluid convection and found that the volumetric fraction of nano 

particles, the Lewis number, the modified diffusivity and the density ratios have a destabilizing effect, while the magnetic field 

has stabilizing effect on the system.In the present paper, the hydromagnetic Instability of visco-elastic Walter’s (modal B´) 

nanofluid layer heated from below has been studied. 

 

II. MATHEMATICAL FORMULATIONS 

Suppose an infinite horizontal layers of Walter’s (modal B´) visco-elastic nanofluid of thickness d bounded by the plane 𝑧 = 0 

and 𝑧 = 𝑑  and heated from below. Fluid layer is working in upward direction under gravity force g (0, 0, -g). The temperature 

T and volumetric fraction 𝜑 of nano particles at 𝑧 = 0  taken to be 𝑇0  and 𝜑0 at 𝑧 = 0 and 𝑇1  and 𝜑1 at𝑧 = 𝑑, (𝑇0 > 𝑇1).  For 

the analytical formulation the thermophysical properties of the nanofluid are constant and these properties are not constant and 

depend upon the volume fraction of the nano particles. 

The governing equations for visco-elastic nanofluid Walter’s (modal B´) under the oberback Boussinesq approximation are: 

∇𝒒 = 0                                        …(1)                                                                                                                   

𝜌
𝑑𝒒

𝑑𝑡
= −∇p + ρg + (μ − μ′ ∂

∂t
) ∇2𝐪 +  

μe

4π
 ( 𝐇. ∇)𝐇                                      …(2)                                

where  
𝑑

𝑑𝑡
=  

𝜕

𝜕𝑡
+ (𝒒. ∇ ) stands for convection derivative, q(u,v,w) is the velocity vector, p is the hydrostatic pressure, μ and μ′ 

are the viscosity and kinematic visco-elasticity respectively and g(0, 0, -g) is acceleration due to gravity, μe is the fluid magnetic 

permeability and H is the magnetic field.  The density 𝜌 of nanofluid can be written as 

𝜌 = 𝜑 𝜌𝑝 + (1 − 𝜑)𝜌𝑓                                                        …(3)                                                                            where 𝜑 is the 

volume fraction of nano particles, 𝜌𝑝 and 𝜌𝑓 are the densities of nano particles and base fluid. 

The equation of motion for visco-elastic Walter’s (modal B´) nanofluid is given as: 

𝜌
𝑑𝒒

𝑑𝑡
= −∇p + ( 𝜑 𝜌𝑝 + (1 − 𝜑){𝜌 (1 − 𝛼(𝑇 − 𝑇0))})g + (μ − μ′ ∂

∂t
) ∇2𝐪 + 

μe

4π
 ( 𝐇. ∇)𝐇                                   …(4) 

where 𝛼 is the coefficient of thermal expansion and μe is the fluid magnetic permeability. 

The continuity equation for the nano particles is 
𝜕𝜑

𝜕𝑡
+ 𝒒 ∇𝜑 =  𝐷𝐵  ∇2 𝜑 +

𝐷𝑇

𝑇1
∇2 𝑇                                                                                         …(5)                                 where 𝐷𝐵 is 

the Brownian diffusion coefficient and 𝐷𝑇 is the Thermoporetic diffusion coefficient of the nano particles. 
The energy equation in nanofluid is 

𝜌𝑐  ( 
𝜕𝑇

𝜕𝑡
+ 𝒒 ∇𝑇) = 𝑘∇2T + (ρc)p( 𝐷𝐵∇𝜑. ∇𝑇 +  

𝐷𝑇

𝑇1
  ∇𝑇 . ∇𝑇)                                                                               …(6) 

Where 𝜌𝑐 is the heat capacity of fluid, (ρc)p is the heat capacity of nano particles and k is the thermal conductivity. 

 

The Maxwell equation being 
𝜕𝑯

𝜕𝑡
+ (𝒒 ∇)𝑯 = (𝑯 ∇)𝒒 + 𝜂 ∇2𝐇                                                                                                                             …(7)                                                                                           

∇𝐇 = 0                                                                                                                                                                      …(8)                                                                                                                              

Where 𝜂 is the fluid electrical resistivity. 

Introducing non-dimensional variables as: 

(𝑥,, 𝑦 ,, 𝑧,) = ( 
𝑥,   𝑦,   𝑧

𝑑
) ,𝑞,( 𝑢,, 𝑣 ,, 𝑤 , ) = 𝑞 ( 

𝑢,   𝑣,   𝑤

𝑘
 ) 𝑑 , 𝑡 , =

𝑡𝑘

𝑑2  , 𝑝, =
𝑝

𝜌𝑘2  𝑑2 , φ′= 
𝜑− 𝜑0

𝜑1−𝜑0
 , T′= 

𝑇− 𝑇0

𝑇0−𝑇1
 ,  
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where  
𝑘

𝜌𝑐
 = k is the thermal diffusivity of the fluid. Equations (1), (4), (5), (6), (7) and (8), in non dimensional form can be 

written as: 

 ∇𝒒 = 0                                                                                                                                                                     …(9) 
1

𝑝𝑟1

𝜕𝒒

𝜕𝑡
= −∇p + (1 − nF)∇2𝐪 − Rmêz − Rnφêz − RaTêz + Q 

𝑝𝑟1

𝑝𝑟2

 ( 𝑯. ∇)𝑯                                                       …(10) 

𝜕𝜑

𝜕𝑡
+ 𝒒 ∇𝜑 =  

1

𝐿𝑒
 ∇2 𝜑 +

𝑁𝐴

𝐿𝑒
∇2 𝑇                                                                                                                           …(11) 

𝜕𝑇

𝜕𝑡
+ 𝒒 ∇𝑇 = ∇2T +

NB

𝐿𝑒
∇𝜑. ∇𝑇 +

𝑁𝐴𝑁𝑩

𝐿𝑒
 ∇𝑇 . ∇𝑇                                                                                            …(12)                                   

𝜕𝐻

𝜕𝑡
+ (𝒒 ∇)𝑯 = (𝑯 ∇)𝒒 +

𝑝𝑟1

𝑝𝑟2

 ∇2𝑯                                                                                                                        …(13)                                                                                      

∇𝑯 = 0                                                                                                                                                                   …(14)                                                                                                                             

[ The dashes ( `) have been dropped for simplicity] 

Here non-dimensional parameters are: 

Lewis number 𝐿𝑒 =
𝑘

𝐷𝐵
 , Prandtl number 𝑝𝑟1

=
𝜇

𝜌𝑘
 , Magnetic Prandtl number 𝑝𝑟2

=
𝜇

𝜌𝜂
 , Rayleigh number Ra =

ρgαd3

μk
( T0 − T1) ,Basic- density Rayleigh number Rm =

[ ρpφ0+ρ ( 1−φ0)]g d3

μk
 , Nano particle Rayleigh number Rn =

( ρp−ρ)(φ1− φ0 )g d3

μk
 , Kinematic visco-elasticity parameter F=

μ′

𝜌𝑑2 , Modified diffusivity ratio 𝑁𝐴 =
𝐷𝑇

𝐷𝑩T1(𝜑1−𝜑0)
( T0 − T1), 

Modified particle density increment 𝑁𝑩 =
(𝜌𝑐)𝑝 (φ1− φ0 )

(𝜌𝑐)𝑓
 , Chandrasekhar number Q=

𝜇𝑒 𝐻0
2 𝑑2

4𝜋𝜈𝜌𝜂
  

We assume that temperature and volumetric fraction of nano particles are constant on boundaries. Thus the dimensionless 

boundaries conditions are 

𝑤 =0, 𝑇 = 1, 𝜑 = 0  𝑎𝑡  𝑧 = 0                                                                                                                             …(15)                                                                                           

and   𝑤 =0, 𝑇 = 0, 𝜑 = 1  𝑎𝑡  𝑧 = 1                                                                                                                    …(16)                                                                                    

 

2.1 Basic states and its solutions 

The basic state of nanofluid is assumed to be time independent and is described by 

𝑞′(𝑢, 𝑣, 𝑤) = 0, 𝑝′ = 𝑝(𝑧), 𝑇′ =  𝑇𝑏(𝑧), 𝜑′ =  𝜑𝑏(𝑧), 𝑯 = (0,0,1)   
The subscript 𝑏 represents the primary variable. 

Equations (9) to (12) using boundary conditions (15) and (16) give solution as: 

𝑇𝑏 = 1 − 𝑧  and  𝜑𝑏 = 𝑧                                                                                                                                         …(17)  

 

2.2 Perturbation solutions 

To study the stability of the system, let us introduced small perturbations to primary flow, and write 

𝑞′(𝑢, 𝑣, 𝑤) = 0 + 𝑞′′ (𝑢, 𝑣, 𝑤),𝑇′ =  𝑇𝑏 + 𝑇′′, 𝜑′ =  𝜑𝑏 + 𝜑′′, 𝑝′ = 𝑝𝑏 + 𝑝′′ ,with 𝑇𝑏 = 1 − 𝑧   and   𝜑𝑏 = 𝑧      …(18) 

Using equation (18) in equation (9) to (14) and linearise by neglecting the product of the prime quantities, we obtain the following 

equations: 

 ∇𝒒 = 0                                                                                                                   …(19) 

  
1

𝑝𝑟1

𝜕𝒒

𝜕𝑡
= −∇p + (1 − nF)∇2𝐪 − Rnφêz + RaTêz + Q 

𝑝𝑟1

𝑝𝑟2

 
∂𝐇

∂z
 êz                                                 …(20) 

𝜕𝜑

𝜕𝑡
+ 𝑤 =  

1

𝐿𝑒
 ∇2 𝜑 +

𝑁𝐴

𝐿𝑒
∇2 𝑇                                                                                                                                …(21)                                                                                               

𝜕𝑇

𝜕𝑡
− 𝑤 = ∇2T +

NB

𝐿𝑒
(

∂T

∂z
−

∂φ

∂z
) − 2

𝑁𝐴𝑁𝑩

𝐿𝑒
 

∂T

∂z
                                                                                                           …(22) 

𝜕𝑯

𝜕𝑡
=

𝜕𝑤

𝜕𝑧
êz +

𝑝𝑟1

𝑝𝑟2

 ∇2𝑯                                                                                                                                            …(23)                                                             

  ∇𝐇 = 0                                                                                                                          …(24) 

The dashes (´´) have been dropped for simplicity. 

Boundary conditions are: 

𝑤 =0, 𝑇 = 0, 𝜑 = 0  𝑎𝑡  𝑧 = 0 and 𝑤 =0, 𝑇 = 0, 𝜑 = 0  𝑎𝑡  𝑧 = 1                                                                  …(25) 

Since 𝑅𝑚 is just a measure of basic static pressure gradient so it is not involved in these and subsequent equations. Now by 

operating Eq. (20) with êz.curl curl, we get: 
1

𝑝𝑟1

𝜕

𝜕𝑡
∇2𝑤 − (1 − nF)∇4𝑤 = Ra∇H

2 T − Rn∇H
2 φ − Q  

∂2𝑤

∂z2                                                                                      …(26) 

where   ∇H
2  =   

∂2

∂x2 +
∂2

∂y2    is the two dimensional Laplacian operator on horizontal plane.  

  

III. NORMAL MODES ANALYSIS 

The disturbances analyzing in to normal modes and assuming that the perturbed quantities are of the form: 

 [w , T , φ ] = [𝑊(𝑧), 𝑇(𝑧), 𝜑(𝑧)] exp ( 𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦 + 𝑛𝑡)                                                                                 …(27) 

Where 𝑘𝑥 and 𝑘𝑦 are wave numbers in x and y directions respectively, while n is growth rate of disturbances. 

Using eq. (27), eq.( 21),(22), and (26) become: 

 𝑊 −  
𝑁𝐴

𝐿𝑒
( 𝐷2 − 𝑎2)𝑇 − [

1

𝐿𝑒
( 𝐷2 − 𝑎2) − 𝑛] 𝜑 = 0                                                                                             …(28)                                                             
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𝑊 +  [( 𝐷2 − 𝑎2) − 𝑛 +  
𝑁𝐵

𝐿𝑒
 𝐷 −

2𝑁𝐴𝑁𝐵

𝐿𝑒
 𝐷] 𝑇 −

𝑁𝐵

𝐿𝑒
𝐷𝜑 = 0                                                                                …(29) 

[( 𝐷2 −   𝑎2)
𝑛

𝑝𝑟1

− (1 − 𝑛𝐹)( 𝐷2 − 𝑎2)2 + 𝑄𝐷2]  𝑊 + 𝑎2𝑅𝑎  𝑇 − 𝑎2𝑅𝑛𝜑 = 0                                                   …(30) 

Where 𝐷 =
𝑑

𝑑𝑧
   and  𝑎 = √𝑘𝑥

2 + 𝑘𝑦
2  is the dimensionless the resultant wave number. The boundary conditions of the problem 

in view of normal mode are written as 

𝑊 = 0, 𝐷2𝑊 = 0, 𝑇 = 0, 𝜑 = 0 at 𝑧 = 0 and 𝑊 = 0, 𝐷2𝑊 = 0, 𝑇 = 0, 𝜑 = 0 at 𝑧 = 1                                …(31) 

 

IV. METHOD OF SOLUTION 

An approximate solution of the system of equations (28)-(30) with the boundary conditions given in eq. (31) is obtained by the 

Galerkin weighted residuals method. In this method the test functions are the same as the base functions. Accordingly W, T, 𝜑 

are taken as: 

𝑊 = ∑ 𝐴𝑝
𝑁
𝑝=1 𝑊𝑝 ,   𝑇 = ∑ 𝐵𝑝

𝑁
𝑝=1 𝑇𝑝, 𝜑 =  ∑ 𝑐𝑝

𝑁
𝑝=1 𝜑𝑝                                                                                                      …(32)     

where 𝐴𝑝,𝐵𝑝 and 𝐶𝑝 are unknown coefficients, 𝑝 = 1,2,3, … 𝑁 and the base functions 𝑊𝑝 , 𝑇𝑝, and 𝜑𝑝 satisfying the boundary 

conditions given in Eq.(31). Using expression for W, T and 𝜑 in equations (28)-(30) and multiplying the first equation by 𝑊𝑝 

the second equation by 𝑇𝑝 and third equation by 𝜑𝑝 and then integrating in the limits from 0 to 1, we obtain a set of 3N unknown  

𝐴𝑝 , 𝐵𝑝 and 𝐶𝑝;  𝑝 = 1,2,3 … . 𝑁.For existing of non trivial solution, the vanishing of the determinant of coefficients produces 

the characteristics equation of the system  in term of Rayleigh number 𝑅𝑎 .  
 

V. LINEAR STABILITY ANALYSIS 

The function corresponding to the eigen value problem considering the solution 

𝑊 = 𝑊0 sin 𝜋𝑧 , 𝑇 = 𝑇0 sin 𝜋𝑧 , 𝜑 = 𝜑0 sin 𝜋𝑧                                                                                              …(33)                                                                  

satisfying boundary conditions given in eq.(31). Substituting solution given in equation (33) in equations (28)-(30), we obtain 

the Eigen equations as: 

𝑅𝑎 =
1

𝑎2  [{(1 − 𝑛𝐹)𝐽 +
𝑛

𝑝𝑟1

} 𝐽 + 𝑄(𝐽 − 𝑎2)](𝐽 + 𝑛) −
{(𝐽  +  𝑛) +  

𝑁𝑎
𝐿𝑒

  𝐽}

1
𝐿𝑒

  𝐽 + 𝑛
 𝑅𝑛                                                             …(34) 

where  𝐽 = 𝜋2 + 𝑎2  

For neutral stability, the real part of n is zero. Hence, on putting 𝑛 = 𝑖 𝜔 , (𝜔  is the real and dimensionless frequency of 

oscillation) in eq.(34), we get: 

𝑅𝑎 =  ∆1 + 𝑖 𝜔 ∆2                                                                                                                                     …(35)           

where  

∆1=  
𝐽

𝑎2  [𝐽2 + 𝑄(𝐽 − 𝑎2) −
𝜔2

𝑝𝑟1

+ 𝜔2𝐹𝐽] −
1

{(
 𝐽
𝐿𝑒

)
2

+ 𝜔2}
 [

𝐽2

𝐿𝑒
2  (𝐿𝑒 + 𝑁𝑎) + 𝜔2] 𝑅𝑛                                                 ... (36) 

and imaginary part 

∆2=   
1

𝑎2 [{1 − 𝐽𝐹 +  
1

𝑝𝑟1

} 𝐽2 + 𝑄(𝐽 − 𝑎2)] −
[ 

𝐽 
𝐿𝑒 

 − 𝐽 (1+
𝑁𝐴
𝐿𝑒

)]

{(
 𝐽
𝐿𝑒

)
2

+ 𝜔2}
 𝑅𝑛                                                                            …(37) 

𝑅𝑎   will be real since it is a physical quantity Hence, it  follow from Eq.(35) that either 𝜔 = 0 (exchange of  stability, steady 

state ) or ∆2= 0 ( 𝜔 ≠ 0  overstability or oscillatory onset). 

 

5.1 Stationary Convection 

When the stability sets in as stationary convection, the marginal state will be characterized by 𝜔 = 0. the Eq.(35) reduces as: 

(𝑅𝑎)𝑠 =  
(𝜋2+ 𝑎2)

𝑎2  [(𝜋2 + 𝑎2) + 𝜋2𝑄 ] − (𝐿𝑒 + 𝑁𝐴)𝑅𝑛                                                                                       …(38) 

Here, it is worthwhile mentoning that the expression for 𝑅𝑎  is independent of both the prandtl numbers, and the parameters 

containing the Brownian effects and the thermophoretic effects and presented in the thermal energy equation and the  

conversation equation for  nano particles. 

Take 𝑥 =
𝑎2

𝜋2  in Eq. (38), then we have  

𝑅𝑎 = 𝜋2  [
(1+𝑥)2

𝑥
+

𝑄(1+𝑥)

𝑥
] − (𝐿𝑒 + 𝑁𝐴)𝑅𝑛                        …(39)                                                                             Now  

𝑑𝑅𝑎

𝑑𝑥
= 𝜋2 [

(−1+ 𝑥2)

𝑥2 −
𝑄

𝑥2]  

The Thermal Rayleigh number 𝑅𝑎  given by Eq. (39) takes its minimum value when 𝑥2 = 𝑄 + 1 .  
Therefore the critical wave number 𝑥 shows a substantial increase when the Chandrasekher number Q increases and it is 

independent of nano particles. 

From eq. (39), it is cleared that for the stationary convection, the kinematic visco-elastic parameter F vanishes with n and hence, 

visco-elastic fluid behaves like an ordinary Newtonian fluid. 

From eq. (39), it is cleared that stationary Rayleigh number 𝑅𝑎 depends upon dimensionless wave number  𝑎 , Lewis number, 

modified diffusivity ratio 𝑁𝐴, and nano particles Rayleigh number 𝑅𝑛 , but it is independent of modified particle density 

increment 𝑁𝐵 , Prandtl number Pr  and density Rayleigh number Rm.    
To study the effects of Lewis number Le, modified diffusivity ratio NA, and nano particles Rayleigh number Rn , and magnetic 

field on stationary convection. We examine the nature of 
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∂Ra

∂Le
 ,

∂Ra

∂NA
,

∂Ra

∂Rn
,

∂Ra

∂Q
   analytically. 

From eq. (39) 
𝜕𝑅𝑎

𝜕𝐿𝑒
 < 0,

𝜕𝑅𝑎

𝜕𝑁𝐴
 < 0,

𝜕𝑅𝑎

𝜕𝑅𝑛
< 0  and   

𝜕𝑅𝑎

𝜕𝑄
 > 0 

It implies that for stationary convection Lewis number, modified diffusivity ratio, and nano particle Rayleigh number have 

destabilizing effect whenever magnetic field has stabilizing effect on the fluid layer. 

 

5.2 Oscillatory Convection 

For oscillatory convection (  𝜔 ≠ 0 ), we must have ∆2=  0, Eq.(37) gives 

𝜔2 =  
𝑎2(𝜋2+ 𝑎2)   [  

1
𝐿𝑒

 − (1+
𝑁𝑎
𝐿𝑒

)]

[{1− (𝜋2+ 𝑎2) 𝐹 +  
1

𝑝𝑟1
 } (𝜋2+ 𝑎2)2+ 𝜋2 𝑄]

 𝑅𝑛 −
(𝜋2+ 𝑎2)

2

𝐿𝑒
2                                                                                         …(40) 

Eq.(40) gives the frequency of oscillatory mode, for the value of parameters considered in the range of102 ≤  𝑅𝑎  ≤ 105, 𝑅𝑛 >
0, 102 ≤  𝑅𝑛  ≤ 106. We get negative value of 𝜔2.Thus oscillatory convection is not possible. 

 

VI. SOME IMPORTANT THEOREM 

From Eq. (34), we have a cubic equation in n, such that 

𝑛3 {
𝐽𝐿𝑒

𝑎2  (
1

𝑝𝑟1

−  𝐽𝐹)} + 𝑛2 [𝐿𝑒{𝐽2 + 𝑄(𝐽 − 𝑎2)} +
𝐽2

𝑎2
(𝐿𝑒 + 1) (

1

𝑝𝑟1

− 𝐽𝐹)] + 𝑛 [
𝐽3

𝑎2 (
1

𝑝𝑟1

− 𝐽𝐹) +
𝐽(𝐿𝑒+1)

𝑎2
{𝑄(𝐽 − 𝑎2) + 𝐽2} −

(𝑅𝑛 + 𝐿𝑒𝑅𝑎)] + [𝐽2{𝐽2 + 𝑄(𝐽 − 𝑎2)} + 𝐽 {𝑅𝑛 (
𝑁𝐴

𝐿𝑒
− 1) + 𝑅𝑎}] = 0                                                                 …(41)     

Theorem-1- The system is stable under the condition  
1

𝑝𝑟1

>  𝐽𝐹  and (𝑅𝑛 + 𝐿𝑒𝑅𝑎) < [
𝐽3

𝑎2 (
1

𝑝𝑟1

− 𝐽𝐹) +
𝐽(𝐿𝑒+1)

𝑎2
{𝑄(𝐽 − 𝑎2) + 𝐽2}] 

and  
𝑁𝐴

𝐿𝑒
> 1. 

Proof- If 
1

𝑝𝑟1

>  𝐽𝐹 and (𝑅𝑛 + 𝐿𝑒𝑅𝑎) < [
𝐽3

𝑎2 (
1

𝑝𝑟1

− 𝐽𝐹) +
𝐽(𝐿𝑒+1)

𝑎2
{𝑄(𝐽 − 𝑎2) + 𝐽2}]     

 and    
𝑁𝐴

𝐿𝑒
> 1 , then equation (41) has not any change in sign and so does not allow any positive root. Then the system is stable. 

Theorem-2- The system is unstable under the condition 
1

𝑝𝑟1

>  𝐽𝐹 and (𝑅𝑛 + 𝐿𝑒𝑅𝑎) > [
𝐽3

𝑎2 (
1

𝑝𝑟1

− 𝐽𝐹) +
𝐽(𝐿𝑒+1)

𝑎2
{𝑄(𝐽 − 𝑎2) +

𝐽2}] and   
𝑁𝐴

𝐿𝑒
> 1. 

Proof- If  
1

𝑝𝑟1

>  𝐽𝐹 and (𝑅𝑛 + 𝐿𝑒𝑅𝑎) > [
𝐽3

𝑎2 (
1

𝑝𝑟1

− 𝐽𝐹) +
𝐽(𝐿𝑒+1)

𝑎2
{𝑄(𝐽 − 𝑎2) + 𝐽2}] and   

𝑁𝐴

𝐿𝑒
> 1 

Then the coefficient of n in the equation (41) is negative, therefore, allows one change of sign and so has at most one positive 

root. The occurrence of a positive root implies that the system is unstable. 

 Theorem-3- The system is stable under the effect of magnetic field. 

 Proof- There is no any change in the sign of equation (41) due to the magnetic field since the term {𝑄(𝐽 − 𝑎2) + 𝐽2} > 0. So 

the equation (41) does not allow any positive root, then the system is stable.  

Theorem-4- The sufficient conditions for non-existence oscillatory 

 convection are 𝑅𝑛 < 0, 1 > (𝑁𝐴 + 𝐿𝑒)  and  𝐽𝐹 < (1 +
1

𝑝𝑟1
)    

Proof- from equation (40), 𝜔2 is given as: 

 𝜔2 =  
𝑎2𝐽  [  

1

𝐿𝑒
 − (1+ 

𝑁𝑎
𝐿𝑒

)]

[{1−  𝐽 𝐹 +   
1

𝑝𝑟1
 }  𝐽2+ 𝜋2 𝑄]

 𝑅𝑛 − 
𝐽2

𝐿𝑒
2     

For 𝑅𝑛 < 0, 1 > (𝑁𝐴 + 𝐿𝑒)  and 𝐽𝐹 < (1 +
1

𝑝𝑟1
)  ; 𝜔2  is negative, whenever for the existence of oscillatory convection 𝜔2 must 

be positive. Then the above conditions are sufficient for the non-existence of oscillatory convection. 

 

VII. RESULTS AND DISCUSSION 

Hydromagnetic Instability of visco-elastic Walter’s (modal B´) nanofluid layer heated from below is investigated under realistic 

boundary conditions. 

Figure 1 represents the variation of stationary Rayleigh number with Lewis number 𝐿𝑒  for different values of 𝑅𝑛 . The stationary 

Rayleigh number 𝑅𝑎  is plotted against Lewis number for fixed values of  𝑁𝐴 = 5, 𝑄 = 100 and 𝑅𝑛 = 10, 20, 30. The Rayleigh 

number decreases with increases in Lewis number, which shows that Lewis number has destabilizing effect on the stationary 

convection. 

Figure 2 represents the variation of stationary Rayleigh number with Lewis number 𝐿𝑒  for different values of 𝑅𝑛. The stationary 

Rayleigh number 𝑅𝑎  is plotted against Lewis number for fixed values of 𝑅𝑛  = 10, 𝑄 = 100, and 𝑁𝐴 = 5, 10, 15. The Rayleigh 

number decreases with increases in Lewis number, which shows that Lewis number has destabilizing effect on the stationary 

convection. 

 Figure 3 represents the variation of stationary Rayleigh number with modified diffusivity ratio  𝑁𝐴 for different values of nano 

particle Rayleigh number 𝑅𝑛. The stationary Rayleigh number 𝑅𝑎  is plotted against 𝑁𝐴 for fixed values of 𝐿𝑒  = 5, 𝑄 = 100 and 

𝑅𝑛 = 10, 20, 30. The Rayleigh number decreases with increases in modified diffusivity ratio 𝑁𝐴, which shows that modified 

diffusivity ratio 𝑁𝐴 has destabilizing effect on the stationary convection. 
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Figure 4 represents the variation of stationary Rayleigh number with modified diffusivity ratio 𝑁𝐴 for different values of Lewis 

number. The stationary Rayleigh number 𝑅𝑎  is plotted against 𝑁𝐴 for fixed values of 𝑅𝑛  = 10, 𝑄 = 100 and 𝐿𝑒 = 5, 10, 15. The 

Rayleigh number decreases with increases in modified diffusivity ratio 𝑁𝐴, which shows that modified diffusivity ratio 𝑁𝐴 has 

destabilizing effect on the stationary convection. 

Figure 5 represents the variation of stationary Rayleigh number with nano particle Rayleigh number 𝑅𝑛 for different values of 

modified diffusivity ratio 𝑁𝐴. The stationary Rayleigh number 𝑅𝑎  is plotted against 𝑅𝑛 for fixed values of 𝐿𝑒 = 5, 𝑄 = 100 

and 𝑁𝐴 = 10, 20, 30. The Rayleigh number decreases with increases in nano particle Rayleigh number 𝑅𝑛, which shows that 

nano particle Rayleigh number 𝑅𝑛  has destabilizing effect on the stationary convection. 

Figure 6 represents the variation of stationary Rayleigh number with nano particle Rayleigh number 𝑅𝑛 for different values of 

Lewis number. The stationary Rayleigh number 𝑅𝑎  is plotted against 𝑅𝑛 for fixed values of 𝑁𝐴  = 10, 𝑄 = 100 and 𝐿𝑒 =
5, 10, 15. The Rayleigh number decreases with increases in nano particle Rayleigh number 𝑅𝑛, which shows that nano particle 

Rayleigh number 𝑅𝑛  has destabilizing effect on the stationary convection. 

Figure 7 represents the variation of stationary Rayleigh number with magnetic field Q for different values of modified diffusivity 

ratio 𝑁𝐴 . The stationary Rayleigh number 𝑅𝑎  is plotted against Q for fixed values of 𝑅𝑛  = 1, 𝐿𝑒 = 10 and 𝑁𝐴 = 5, 10, 15. The 

Rayleigh number increases with increases in Q which shows that magnetic field  has stabilizing effect on the stationary 

convection. 

Figure 8 represents the variation of stationary Rayleigh number with magnetic field Q for different values of nano particle 

Rayleigh number 𝑅𝑛 . The stationary Rayleigh number 𝑅𝑎  is plotted against Q for fixed values of 𝑁𝐴  = 5, 𝐿𝑒 = 10 and 𝑅𝑛 =
1, 5, 10. The Rayleigh number increases with increases in Q which shows that magnetic field  has stabilizing effect on the 

stationary convection. 

 
Fig.1: Variations of stationary Rayleigh  number with Lewis number 

 
Fig.2: Variations of stationary Rayleigh number with Lewis number 
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Fig.3:Variations of stationary Rayleigh number  with Modified diffusivity ratio 𝑁𝐴 

 
Fig.4:Variations of stationary Rayleigh number with Modified diffusivity ratio 𝑁𝐴 

 

 
Fig.5: Variations of stationary Rayleigh number with Nano particle Rayleigh number   𝑅𝑛 
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Fig.6: Variations of stationary Rayleigh   number with Nano particle Rayleigh number  Rn 

 

 
Fig.7: Variations of stationary Rayleigh number with Magnetic field Q 

 

 
Fig.8:Variations of stationary Rayleigh number with Magnetic field Q 

 

CONCLUSIONS 

Hydromagnetic Instability of visco-elastic Walter’s (modal B´) nanofluid layer heated from below is investigated by using linear 

instability analysis. The main conclusions from the analysis of this paper are as follows: 
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(1) For the stationary convection magnetic field has stabilizing effect on the system. 

(2) Lewis number, modified diffusivity ratio and nano particle Rayleigh number have destabilizing effect on the stationary 

convection. 

(3) For the stationary convection, the visco-elastic nanofluid behaves like an ordinary fluid. 

(4) The system is stable for the condition  
1

𝑝𝑟1

>  𝐽𝐹  and (𝑅𝑛 + 𝐿𝑒𝑅𝑎) < [
𝐽3

𝑎2 (
1

𝑝𝑟1

− 𝐽𝐹) +
𝐽(𝐿𝑒+1)

𝑎2
{𝑄(𝐽 − 𝑎2) + 𝐽2}] and  

𝑁𝐴

𝐿𝑒
>

1.  

(5) The system is unstable for the condition 
1

𝑝𝑟1

>  𝐽𝐹  and  (𝑅𝑛 + 𝐿𝑒𝑅𝑎) > [
𝐽3

𝑎2 (
1

𝑝𝑟1

− 𝐽𝐹) +
𝐽(𝐿𝑒+1)

𝑎2
{𝑄(𝐽 − 𝑎2) + 𝐽2}] and  

𝑁𝐴

𝐿𝑒
>

1.  

(6) The sufficient conditions for the non-existence oscillatory convection are  𝑅𝑛 < 0, 1 > (𝑁𝐴 + 𝐿𝑒)  and  𝐽𝐹 < (1 +
1

𝑝𝑟1
)    

(7) The system is stable under the effect of magnetic field if {𝑄(𝐽 − 𝑎2) + 𝐽2} > 0.  
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