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Abstract— This paper presents an ideology of area and time efficient CORDIC algorithm that completely eliminates 

the scale-facto by the suitable selection of the order of approximation of Taylor series concept. The proposed CORDIC 

circuit attains the desired range of convergence and meets the accuracy requirement. An algorithm called Generalized 

micro-rotation selection technique has been implemented to redefine the elementary angles for reducing the number of 

CORDIC iterations. The proposed CORDIC processor provides the flexibility to change the number of iterations 

depending on the accuracy, area and latency requirements. The proposed Cordic processor was simulated in 

Modelsim6.1 and implemented on Xilinx Spartan XC2S500E device and Chipscope Pro in order to evaluate various 

parameters. 
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I. INTRODUCTION  

CORDIC (for COordinate Rotation DIgital Computer), also known as Volder's algorithm, is a simple and efficient 

algorithm to calculate hyperbolic and trigonometric functions, typically converging with one digit (or bit) per iteration. 

CORDIC is therefore also an example of digit-by-digit algorithms. CORDIC and closely related methods known as pseudo-

multiplication and pseudo-division or factor combining are commonly used when no hardware multiplier is available (e.g. 

in simple microcontrollers and FPGAs), as the only operations it requires are addition, subtraction, bit shift and table 

lookup.The coordinate rotation digital computer (CORDIC) has established its popularity in several important areas of 

application, like generation of sine and cosine functions, calculation of discrete sinusoidal transforms like fast Fourier 

transform (FFT), discrete sine/cosine transforms (DST/DCT), householder transform (HT), etc.. Many variations have been 

suggested for efficient implementation of CORDIC with less number of iterations over the conventional CORDIC algorithm. 

The number of CORDIC iterations is optimized by greedy search at the cost of additional area and time for the implementation 

of variable scale-factor. Efficient scale-factor compensation techniques are proposed, which adversely affect the 

latency/throughput of computation. Two area-time efficient CORDIC architectures have been suggested, which involve 

constant scale-factor multiplication for adequate range of convergence (RoC). The virtually scale-free CORDIC also requires 

multiplication by constant scale-factor and relatively more area to achieve respectable RoC. The enhanced scale-free CORDIC 

in combines few conventional CORDIC iterations with scaling-free CORDIC iterations for an efficient pipelined CORDIC 

implementation with improved RoC. However, if used for recursive CORDIC architecture, combining two different types of 

CORDIC iterations degrades performance. In this paper, we propose a novel scaling-free CORDIC algorithm for area-time 

efficient implementation of CORDIC with adequate RoC. The proposed recursive architecture has comparable or less area 

complexity with other existing scaling-free CORDIC algorithms. Moreover, no scale-factor multiplications are required for 

extending the RoC to entire coordinate space, as required. propose a novel scaling-free CORDIC algorithm for area-time 

efficient implementation of CORDIC with adequate RoC. The proposed recursive architecture has comparable or less area 

complexity with other existing scaling-free CORDIC algorithms. Moreover, no scale-factor multiplications are required for 

extending the RoC to entire coordinate space, as required. The CORDIC algorithm operates either in, rotation mode or 

vectoring mode, following linear, circular or hyperbolic coordinate trajectories. In this paper, we focus on rotation mode 

CORDIC using circular trajectory. 

II. CONVENTIONAL CORDIC ALGORITHM 

In conventional CORDIC to obtain the rotated vector, the angle of rotation “θ”  is decomposed into a sequence of 

fixed predefined elementary rotations with variable direction. The conventional rotation mode CORDIC estimates the (i+1)th 

intermediate rotated vector from the ith vector using circular trajectory as yi+1 

 

                 (1) 

 

Where Ki=cosαi 

αi=tan-1(2-i) 

The sine sequence µi€ {1,-1} is selected so that 

 

               Ɵ=                                           (2) 
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Note that the range of convergence of this algorithm is limited to [-99.99̊,99.99̊], which can be extended to entire 

coordinate space using the properties of sine and cosine functions, using an extra iteration for full-range rotation. Scaling-free 

CORDIC was the first attempt to completely dispose of the scale-factor. However, the approximation imposes a restriction on 

the basic-shift1 i = [(b-2.585)/3]. For 16-bit data, the basic-shift=4 results in extremely low range of convergence. However, 

modified virtually adaptive scaling-free algorithm, extends the range of convergence over the entire coordinate space and 

introduces an adaptive scale-factor. The minimum possible permissible shifts in the CORDIC iteration have been termed as 

basic shift, which is equal to the number of right shifts in the first CORDIC iteration. 

A. Rotation mode 

CORDIC can be used to calculate a number of different functions. This explanation shows how to use CORDIC in rotation 

mode to calculate the sine and cosine of an angle, and assumes the desired angle is given in radians and represented in a fixed-

point format. To determine the sine or cosine for an angle, the y or x coordinate of a point on the unit circle corresponding to 

the desired angle must be found. Using CORDIC, one would start with the vector  V0 

V0=                                           (3) 

 

In the first iteration, this vector is rotated 45 degree counterclockwise to get the vector Vi,  Successive iterations rotate the 

vector in one or the other direction by size-decreasing steps, until the desired angle has been achieved. Step “i” size is arctan(2-

i) for i=0,1,2,3,.... [6] 

 

 
 

Fig. 1  An illustration of CORDIC algorithm in process 

More formally, every iteration calculates a rotation, which is performed by multiplying the vector Vi-1 with the rotation matrix 

Ri:  

Vi=Ri Vi-1                                                                       (4) 

B. Vectoring mode 

The rotation-mode algorithm described above can rotate any vector (not only a unit vector aligned along the x axis) by an 

angle between –90° and +90°. Decisions on the direction of the rotation depend on being positive or negative.  

 

The vectoring-mode of operation requires a slight modification of the algorithm. It starts with a vector the x coordinate of 

which is positive and the y coordinate is arbitrary. Successive rotations have the goal of rotating the vector to the x axis (and 

therefore reducing the y coordinate to zero). At each step, the value of y determines the direction of the rotation. The final 

value contains the total angle of rotation. The final value of x will be the magnitude of the original vector scaled by K. So, an 

obvious use of the vectoring mode is the transformation from rectangular to polar coordinates.  

 

III. PROPOSED ALGORITHM FOR SCALING FREE CORDIC 

The proposed design is based on the following key ideas: 1) we use Taylor series expansion of sine and cosine 

functions to avoid scaling operation and 2) suggest a generalized sequence of  micro-rotation to have adequate range of 

convergence (RoC) based on the chosen order of approximation of the Taylor series. 

 

A.Representation of Micro-Rotations Using Taylor Series Approximation 

Here, we study the impact of orders of approximation of Taylor series of sine and cosine functions on the micro-

rotations to be used in CORDIC coordinate calculation. 

We have used above equation for coordinate calculation for evaluating the best possible combination of approximation, which 

satisfies the accuracy and RoC requirements, with minimum possible hardware. Since the errors resulting are of very small 

order, we prefer to use them for coordinate calculation with minimum complexity.  

 

B.Micro-Rotations Using Taylor Series Approximation and Factorial Approximation:  

Although, we find that we can use Taylor series expansion with third order of approximation, with desired accuracy 

and RoC requirement cannot be used in the CORDIC shift-add iterations. The maximum percentage of error in sine and cosine 

values for both third order of approximation and factorial approximation is 0.0004% and 0.0168%, respectively, within the 

permissible CORDIC elementary angles range. 
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TABLE I 

BIT REPRESENTATION OF ELEMENTARY ANGLES AND CORRESPONDING SHIFTS 

Shift 

( ) 

Elementary angle( ) 

Decimal 16 bit hexadecimal 

2 0.25 4000H 

3 0.125 2000H 

4 0.0625 1000H 

5 0.03125 0800H 

 

 

C.Determination of the Basic-Shift for a Given Order of Approximation of Taylor Series Expansion 

One can find that: 1) the order of approximation of Taylor series expansion of sine and cosine functions determines 

the basic-shift to be used for CORDIC iterations, and 2) the basic-shift of CORDIC micro operation determines the range of 

convergence. The expressions for the basic-shifts, the first elementary angle of rotation( )and RoC for different orders of 

approximations for different word-length of  implementations are as follows: 

 

Basic shift, s=(b-log2(n+1)!)/(n+1)                             (5) 

Where b is word length, and 

RoC=nixαi                                                                            (6) 

Where ni is the number of micro rotation 

TABLE II 

COMPARISON OF APPROXIMATION ORDERS VERSUS ROC FOR VARIOUS BIT WIDTHS BASED ON (6) 

Order 

of 

approxi

mation 

Basic shift 

First 

elementary 

angle(Radians) 

ROC for 

π=4 

(Radians) 

16 

bit 

32 

bit 

16 

bit 
32 bit 

16 

bit 

32 

bit 

3 2 6 0.25 0.0156 1 0.06 

4 1 5 0.5 0.0312 2 0.12 

5 1 3 0.5 0.125 2 0.5 

The values in Table II are derived from (5). We find with increase in the order of approximation, the basic-shift 

decreases, the first elementary angle of rotation increases and RoC is expanded. Very often inclusion of higher order terms 

does not have any impact on the accuracy for smaller word-lengths. The basic-shift for third order of approximation using (5), 

for 16-bit word-length is [2.854].The RoC(with basic-shift for 16-bit) is large enough to be mapped to the entire coordinate-

space. 

 

IV.GENERALISED MICRO-ROTATION SELECTION 

In the proposed generalized micro-rotation sequence, we perform multiple iterations of basic-shift, followed by non-

repetitive unidirectional iterations of the micro-rotations corresponding to other shift indices, to minimize the number of 

iterations and achieve adequate range of convergence. 

 

A. Organization of Micro-Rotation Sequence 

In the proposed scheme, we represent the rotation angle “θ” as 

                                                  θ =n1. +  

n=n1+n2                                                                  (7) 

 

where,  is the elementary angle corresponding to the basic-shift, are elementary angles for other shifts, n1 and n2 are 

non-negative integers and a represents the total number of iterations. If we do not use any micro-rotation of angle and then n1 

is zero, and n2=n. On the other hand, if the desired angle of rotation “θ” is a multiple of as then n2 is zero and n1=n. 

 

B. Defining the Elementary Angles 

The elementary angles  and  given by 

  = 2-α  2-αi                   (8) 
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where, s is the basic-shift and >s  is the shift for ith iteration. For basic-shift =2, we can find =7π/88 and for basic-shift  

=3, we can find =7π/176. In Table II, we list the decimal and (0, 16) fixed point binary representation of the elementary 

angles corresponding to different shifts. 

 

C. Generalized Micro-Rotation Sequence Identification 

We identify the micro-rotations depending on the bit representation of the desired rotation angle in radix-2 system 

using most-significant-1 detector. For this we restrict the maximum rotation angle to π/4 radians as the entire coordinate space 

[0,2π], can be mapped to the [0.π/4] using octant symmetry of sine and cosine functions. Pseudo code for generating the 

micro-rotation sequence 

 

Input: angle to be rotated (θi) 

Begin 

M=Most-Significant-1 Location of θi 

if(M==15)then 

α=0.25 radians 

shift, si=2 and θi+1= θi- α 

Else 

   Shift, si=16-M 

   θi+1= θi with θi[M]=’0’ 

End 

 

If the most-significant-1 location (M) of the rotation angle “θ” is smaller than the basic-shift “ ”, elementary angle 

of the basic-shift would be used for the CORDIC iteration. For a fixed word-length of N-bit, the shift ) for the elementary 

angle is given  by 

=N-M                            (9) 

 

D. Number of Iterations to Have Desired RoC 

In this section, we decide on a suitable value of “α” for realizing rotations by angles in the range [0,π/4].The basic-

shift for 16-bit word-length is “2.854”. But the basic-shift should be an integer, so we design the iterations for both “2” and 

“3”.With basic-shift =2[ =7pi/88], no more than three iterations of  are required; therefore, the maximum value of  is 

3.The iterations corresponding to  depend on the accuracy requirements. With various values of   the accuracy varies 

and is different for “x” and “y” coordinates.  

V. PROPOSED CORDIC ARCHITECTURE 

 The block diagram for the proposed CORDIC architecture is shown in Fig. 2. It makes use of the same stage for all 

the iterations for the coordinate calculations, as well as for the generation of shift values. The structure of each stage (shown in 

Fig. 2) consists of three computing blocks namely: the 1) shift-value estimation; 2) coordinate calculation; and 3) micro-

rotation sequence generator. The combinatorial circuit for the evaluation of desired shift values is shown in Fig. 3; the 

coordinate calculation is implemented according to (6); the combinatorial circuit for generating the micro-rotation sequence is 

shown in Fig. 2. 

 

 
Fig.2 Proposed CORDIC processor 

  

The number of iterations required in a CORDIC processor decides the rollover count of the counter. The rollover 

count is seven for basic shift=2 and ten for basic-shift =3. The expiry of the counter signals the completion of a CORDIC 

operation; depending on this signal, the multiplexer either loads a new data-set (rotation angle, initial value of "x" and "y") to 

start a fresh CORDIC operation, or recycles the output of the stage to begin a new iteration for the current CORDIC operation. 

The input and output register files act as latches for synchronization. 

 

VI. FPGA IMPLEMENTATION 
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The proposed architecture is coded in VHDL and synthesized using Xilinx ISE9.2i to be implemented in Xilinx 

Spartan 3E (XC2S500EPQ208- 6) device. Slice-delay-product of the proposed architecture is compared with the existing 

CORDIC designs in Table IV; where, all designs are synthesized on Xilinx Spartan 3E XC2S500E device to maintain 

uniformity. 

 

A .ChipScope Pro 

The use of FPGAs allows for an alternative way to perform testing and debug activities which excludes the use of a logic 

analyzer. The method relies on incorporating specific circuit cores into the design, which can monitor the rest of the system, 

and send information to a host computer. The ChipScope Pro collection of IP cores accomplishes this task; by instantiating the 

Integrated Controller (ICON) and one or more Integrated Logic Analyzers (ILAs) into a design, any signals in the design can 

be sampled; the data thus captured can then be sent to a host computer for analysis. 

 
 

Fig.3 Testing and Debug of Digital Designs using ChipScope 

VII. CONCLUSION 

 The proposed algorithm provides a scale-free solution for realizing vector-rotations using CORDIC. The order of 

Taylor series approximation is decided appropriately by the proposed algorithm, not only to meet the accuracy requirement but 

also to attain adequate range of convergence. The generalized micro-rotation selection technique is suggested to reduce the 

number of iterations for low latency implementation. Moreover, a high speed most-significant-1 detection scheme obviates the 

complex search algorithms for identifying the micro- rotations. The proposed CORDIC Processor has lower slice delay with 

penalty of increased slice 

 consumption on Xilinx Spartan 3E device.
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