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Abstract—Linear and nonlinear analyses have been done and the combine effect of internal heating and Soret effect on 

Darcy - Brinkman convection in a binary viscoelastic fluid saturated porous layer, heated and salted from below, has 

been studied, analytically. Linear stability analysis has been performed by using normal mode technique and nonlinear 

analysis is done using truncated Fourier series. The modified Darcy-Brinkman-Oldroyd model, including the time 

derivative term, is employed for the momentum equation. The effects of Darcy number, Soret parameter, relaxation 

and retardation parameters, solute Rayleigh number, internal heat source, Lewis number and Darcy-Prandtl number 

on stationary and oscillatory convection are shown graphically. Also heat and mass transports are calculated in terms 

of the Nusselt number and Sherwood number and presented graphically. 

 

Index Terms— Double diffusive convection; Viscoelastic fluid; Internal heat source; Soret parameter; Porous media.  

_____________________________________________________________________________________________________ 

I. INTRODUCTION  

 There is large number of practical situations in which convection is driven by internal heat source in a porous medium. The 

wide applications of such convection occur in nuclear reactions, nuclear heat cores, nuclear energy, nuclear waste disposals, 

oil extractions, and crystal growth. The study concerning internal heat source in porous media is provided by Tveitereid [1], 

who obtained the steady solution in the form of hexagons and two dimensional rolls for convection in a horizontal porous layer 

with internal heat source. Horton and Rogers [2] and Lapwood [3] were the first to obtained analytically the expression for 

critical Rayleigh number for the onset of convection in a fluid-saturated porous layer heated from below. Bejan [4] studied 

analytically the buoyancy induced convection with internal heat source, Parthiban and Patil [5] studied the effect of non-

uniform boundaries temperature on thermal instability in a porous medium with internal heat source and predicted that internal 

heat source parameter advances the onset of convection. Hill [6] performed linear and nonlinear analyses on the double-

diffusive convection in a porous layer with a concentration based internal heat source. Bhadauria et al. [7]-[8]  studied effect of 

internal heating on double diffusive convection in a couple stress fluid saturated anisotropic porous medium and also natural 

convection in a rotating anisotropic porous layer with internal heat source. Khan and Aziz [9] studied transient heat transfer in 

a heat-generating fin with radiation and convection with temperature-dependent heat transfer coefficient. 

Further, there are many studies available on the effect of cross-diffusion on onset of double-diffusive convection in a porous 

medium. Thermal convection in a binary fluid driven by the Soret and Dufour effects has been investigated by Knobloch [10]. 

Hurle and Jakeman [11] performed a theoretical study of Soret driven thermosolutal convection in a binary fluid mixture. 

Linear and nonlinear analyses of double diffusive convection in a fluid saturated porous layer with cross-diffusion effects has 

been carried out by Malashetty and Biradar  [12]. Rudraiah and Malashetty [13] carried out a study on double diffusive 

convection in a porous medium in the presence of Soret and Dufour effects, while Gaikwad et. al. [14]-[16] performed a linear 

and nonlinear double diffusive convection in a fluid-saturated anisotropic porous layer with cross-diffusion and obtained the 

effect of cross diffusion coefficients. Bhadauria, Hashim et al. [17]  investigated the double diffusive convection in a fluid 

saturated anisotropic porous layer with Soret effect and internal heat source. Rudraiah, Siddheshwar [18] did a weak nonlinear 

stability analysis of double diffusive convection with cross diffusion in a fluid saturated porous medium and obtained some 

very interesting results. 

Convection in binary fluids is a complex process. The presence of concentration currents as well as thermal currents leads to 

linear and nonlinear behavior. In a binary fluid, the density depends on both temperature and solute concentration. This leads 

to a competition between heat diffusion and solute diffusion, and consequently oscillatory motions may occur. The oscillatory 

convective instability in binary fluid mixtures is well understood by Platten and Legros [19]. Taslim and Narusawa [20] 

investigated binary fluid composition and double diffusive convection in a porous medium. Further, the studies of double 

diffusive convection in porous media plays very significant roles in many areas such as in petroleum industry, solidification of 

binary mixture, migration of solutes in water saturated soils. Other examples include; geophysics system, crystal growth, 

electrochemistry, the migration of moisture through air contained in fibrous insulation, Earth's oceans, magma chambers etc. 

The studies on double diffusive convection in a porous media has been presented in details by Ingham and Pop [21], Nield and 

Bejan [22] and vafai [23]-[24] and Vadasz [25] in their books. Further, it was performed by many other researchers, namely; 
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Poulikakos [26], Travison and Bejan [27], Momou [28] etc. The very first study on double diffusive convection in porous 

media was mainly concerned with linear stability analysis, and was performed by Nield [29]. 

It is well known that the Darcy's law is not valid for non-Newtonian fluid flows in porous media. Swamy et al [30] studied the 

onset of Darcy-Brinkman convection in a binary viscoelastic fluid saturated porous layer, where the modified Darcy-

Brinkman-Oldroyd model has been developed. However, published works on thermal convection of viscoelastic fluids in 

porous media are fairly limited. Rudraiah et al. [31] have studied the thermal stability of a viscoelastic fluid saturated sparsely 

packed porous layer. Kim et al. [32] studied the thermal instability of viscoelastic fluids in a porous medium by performing 

linear and nonlinear analyses. Yoon et al. [33] analyzed the onset of thermal convection in a horizontal porous layer saturated 

with a viscoelastic liquid using a linear theory. Zhang et al. [34] carried out linear and nonlinear analyses of thermal 

convection for Oldroyd-B fluids in porous media, heated from below. Gaikwad and Kouser [35] investigated the onset of 

Darcy-Brinkman convection in a binary viscoelastic fluid saturated porous layer with internal heat source. Gaikwad and 

Dhanraj [36] studied Soret effect on Darcy-Brinkman convection in a binary viscoelastic fluid-saturated porous layer and 

studied the cross diffusion effects on convective instability. Stability analysis of Soret-driven double diffusive convection of a 

Maxwell fluid in a porous medium has been investigated by Wang and Tan [37]. Narayana et al. [38] performed linear and 

nonlinear stability analysis of binary Maxwell fluid convection in a porous medium with Soret and Dufour effects. Rudraiah et 

al. [39] have studied the stability of a viscoelastic fluid saturated sparsely packed porous layer. Malashetty et al. [40] have 

investigated the onset of convection in a binary viscoelastic fluid saturated porous layer. Kumar and Bhadauria [41] performed 

stability analysis to study thermal instability in a rotating anisotropic porous layer saturated by a viscoelastic fluid. 

Malashetty et al. [42] did an analytical study of linear and nonlinear double diffusive convection with soret effect in couple 

stress liquids. More recently, Gaikwad and Kamble [43] have studied theoretically, the cross diffusion effects on convective 

instability in porous media and Gaikwad et al. [44] have performed a study on double diffusive convection in a binary 

viscoelastic fluid saturated porous layer with Soret effect and internal heat source. Therefore, in the present paper, we have 

carried out linear and nonlinear stability analyses and studied the effect of internal heat and Soret parameter on Darcy-

Brinkman convection in a binary viscoelastic fluid saturated porous layer. 

 

2.  MATHEMATICAL FORMULATION  

 Consider a viscoelastic fluid saturated porous layer, confined between two infinitely extended horizontal planes at 0z = and 

z d=  heated from below and cooled from above. An internal heat source term has been included in the energy equation. A 

cartesian frame of reference is chosen in such a way that the origin lies on the lower plane and the z-axis as vertical upward. 

An adverse temperature gradient is applied across the porous layer and the lower and upper planes are kept at temperature

0T T+  , and 0T with concentration 0S S+  and 0S respectively. The governing equations are as given  

 

. 0                                                                q =

   

                     (1a) 

20
1 21 1 c

q
p g q q

t t t

 
   

 

       
+ + − = +  −     

       
 (1b) 

( ) ( )2

11 0

T
q T K T Q T T

t



+  =  + −


  (1c) 

( ) 2 2

22 21

S
q S K S K T

t



+  =  + 


  (1d) 

( ) ( )0 0 01 T ST T S S   = − − + −     (1e) 

where the physical variables have their usual meanings as given in the nomenclature. The externally imposed the thermal and 

solutal boundary conditions are given by 

  

0 0

0 0

;     0   ;    ;

;    0    ;    ;

T T T at z and T T at z d

S S S at z and S S at z d

= +  = = =

= +  = = =

                                                

(2) 

2.1.   BASIC SOLUTION 

 

At this state the velocity, pressure, temperature and density profiles are given by  

0, ( ), ( ), ( ), ( ).b b b b bq p p z T T z S S z z = = = = =
                          

(3) 

Substituting Eq. (3) in Eq. (1a-1e), we get the following relations:  

,b
b

dp
g

dz
= −                                                                                (4) 
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2

11 02
( ) 0,b

b

d T
K Q T T

dz
+ − =                                             (5)    

2

2
0,bd S

dz
=                                                             (6)   

 0 0 01 ( ) ( ) .b T b S bT T S T   = − − + −                  (7)  

 
The solution of Eq. (5), subject to the boundary condition (2),is given by 

0

1

.
i

b

i

z
sin R

d
T T T

sin R

 
− 

 
= +                                  (8) 

The solution of Eq. (5), subject to the boundary condition (2), 

0 1b

z
S S S

d

 
= +  − 

 
                                             (9) 

Now, we superimpose finite amplitude perturbations on the basic state in the form: 

 ',  ',   ',  ',  ',b b b b bq q q T T T p p p S S S   = + = + = + = + = +                   (10) 

We get the following set of equations: 
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22 21

0

' '

' ' 'T S

S K T

T S   

 + 
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Infinitesimal perturbation was applied to the basic state of the system and then the pressure term was eliminating by taking 

curl twice of Eq. (1b). The above resulting equations are non-dimensionalized using the following transformations, 
2

* * * * 11

11

( ', ', ') ( , , ) ,  ' ( ),  ,
Kd

x y z x y z d t t q q
K d

 = = =
* * * * *11( , , ) ( , , )( ),   ' ( ) ,  ' ( )

K
u v w u v w T T T S S S

d
= =  = 

  (11)              

 

T
b

 , S
b
 in dimensionless forms are given as 

(1 ),bT z= − (1 )bS z= −
                                              (12) 

The non dimensionalized equations (on dropping the asterisks for simplicity) are     

( )2 2 2 4 2
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D
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 
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      

           (13) 

2 . 0iR q T w
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 
− − +  − =  

          

 (14) 

2 21
( . ) 0n r

e

S q S S T w
t L


 

− +  −  − = 
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        (15) 

where 
2

11

D

d
Pr

K K


=  is Darcy-Prandtl number, 

11

T
T

g SKd
Ra

K
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


=  is the thermal Rayleigh number,
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g SKd
Ra

K






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solute Rayleigh number, 
2

11

i

Qd
R

K
=  is the internal Rayleigh parameter, 11

1 12
( )

K

d
 


=  is relaxation parameter , 11

2 22
( )

K

d
 


=  

is retardation parameter, 11

22

e

K
L

K
=  is Lewis number, 21

11

r

K T
S

K S


=


 the soret parameter,

n





=  normalized porosity. The above 

system will be solved by considering stress free and isothermal boundary conditions as given below:  
2

2
0  at  0, 1.

w
w T S z z

z


= = = = = =


         (16) 
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3. LINEAR STABILITY ANALYSIS 

In order to do the linear stability analysis of the system, Eq. (13)-(15) subject to the boundary condition given in Eq.(16), we 

use time dependent periodic disturbance in horizontal plane as  

( ) ( )( ), ,( ,, ,)w T S W exp i lx my t =  + +          (17) 

 
Where α are horizontal wave number and r ji  = +  is growth rate. Substituting eq. (17) into the lineralized eq. (13)-(15). 

We obtain  

( ) ( ) ( )( ) ( )
2

2 2 2 2 2 2 2 2

1 21 1 1 0
Pr

T S a

D

D a W a Ra a Ra D a D D a W


   
   + − + − − + − − − =     

   (18) 

2 2(D  - a ) - Ri  W = 0 − −           (19) 

2 2
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e
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W D a S

L
  
 −

+ − − −  = 
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        (20) 

Where 
2 2 2a l m= +  . The boundary conditions (16) are now  

2

2
0    0, 1.

W
W on z z

z



= =  = = = =


                       (21) 

We assume the solution , ,W   as 
 

( ) ( )0 0 0 Sin          (n=1,2,3......, ., ., ), ,n zW W  =    

The most unstable mode corresponds to n = 1 (fundamental mode). Therefore, substituting Eq. (21) with n = 1 into Eq. (18)-

(20), we obtain a matrix form  0A x =  as                     

( )

( )

2 2 2 2
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 

       (22) 

 The thermal Rayleigh number can be expressed as  
22

2 2

22

(1 )
( 1) ( ) i r

T a i S

D
n

e

R S
Ra D R Ra

a Pr

L

  
  


 

  − + −
= +  + + − + 

  +

    

 (23) 

Where
2 2 2a = + , 2

1

1

1

 



+
 =

+
. The growth rate  is in general a complex quantity such that  r ii  = + . The 

system with 0r   is always stable, while for 0r   it will become unstable. For neutral stability state 0r =
 

 

3.1. STATIONARY STATE 

We now set 0 =  at the margin of stability. The expressed for the thermal Rayleigh number of the system for a stationary 

mode of convection is as given below: 

( )22 2
2 2

2 2

(1 )
(1 )( ) ,

r i est

T a i S

S R La
Ra D R Ra

a


 



− −+
= + − +      

 (24) 

It is important to note that the critical wave number
St

ca a= , where 
St

ca S=  satisfied the following equation  

3 2 2 4 22 (3 1) ( 1) 0a a aD S D S D  + + − + =         (25) 

In the absence of Soret effect i.e. 0rS =  Eq. (24) becomes  
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(1 )( ) .st i e

T a i S

R La
Ra D R Ra

a


 



−+
= + − +       (26) 

For the system without internal-heating, i.e., 0iR =  we get  

2 2 2
2

2

( )
(1 )st

T a e S

a
Ra D L Ra

a




+
= + +          (27) 

 

This is exactly the same as obtained by Swamy et al. [30]. When 0aD →   

2 2 2

2

( )st

T e S

a
Ra L Ra

a

 +
= +           (28) 

 

In case of single component fluid, the Solutal Rayleigh number is zero i.e. 0SRa =  , we have 

2 2 2

2

( )st

T

a
Ra

a

 +
=            (29) 

 

Which is the classical result obtained by Horton and Rogers [2] and Lapwood  [3] for single component fluid in porous layer.  

3.2. OSCILLATORY STATE 

 

We set 
ii =  in Eq. (23) and clear the complex quantities from the denominator, to obtain  

1 2

osc

T iRa i=  +  .                                                     (30) 

Where  
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For oscillatory mode 2 0 =  and 0i  , which is not given for brevity. The thermal Rayleigh number for oscillatory mode 

is given as:  

1

osc

TRa =              (31) 

                                                       
 

4. NONLINEAR STABILITY ANALYSIS 

In this section, we study the nonlinear stability analysis using minimal truncated Fourier series. For simplicity, we confine 

ourself only to two dimensional rolls, so that all the physical quantities are independent of y. Introducing the stream function 

  as ,  w= -u
z x

  
=
 

 and taking curl of Eq. (1 b) to eliminate pressure term we get 

( )2 4 2

1 2

1
1 1T S a

D

T S
Ra Ra D

t Pr t x x t
    

        
+  + − = +  −    

        
    (32) 

( )

( )
2

,
0

,
i

T
R T

t x z x

   
− − − + = 

   
         (33) 

( )

( )
1 2 2

,
0

,
n e r

S
L S S T

t x z x

 
 −

  
−  − + −  = 

   
        (34) 

It is to be noted that the effect of nonlinearity is to distort the temperature concentration fields through the interaction of    

and  ,T  and S . As a result a component of the form (2 )Sin z will be generated. A minimal Fourier series which describes 

the finite amplitude convection is given by 

1( ) ( ) ( ),A t sin ax sin z =           (35) 

2 3( ) ( ) ( ) ( ) (2 ),T A t cos ax sin z A t sin z = +         (36) 

4 5( ) ( ) ( ) ( ) (2 ),S A t cos ax sin z A t sin z = +
        (37)
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Where the amplitudes

1( )A t ,
2 ( )A t ,

3( )A t ,
4 ( )A t , 

5 ( )A t  are functions of time and are to be determined. Substituting above 

expressions in Eq. (13)-(15) and equating the like terms, the following set of nonlinear autonomous differential equations were 

obtained 

1dA
B

dt
=             (38) 

( )
2

4 2 2 2 2 4
2 2 1 2 4 1 12

1

1D
a a T S T S

D

Pr dA dAdB
D B D A aRa A aRa A a Ra a Ra

dt Pr dt dt


       

 

  
= − + + + + + − + −  

  

 (39) 

22
1 2 1 3[ ( ) ]i

dA
aA R A aA A

dt
 = − + − +          (40) 

23
3 1 2( 4 )

2
i

dA a
R A A A

dt


= − +          (41) 

1 2 24
1 4 1 5 2

1
( )e r

n

dA
aA L A aA A S A

dt
  



−= − + + +        (42) 

2 1 25
5 1 4 3

1
(4 4 )

2
e r

n

dA a
L A A A S A

dt


 



−= − − +         (43) 

                             

 

4.1.  STEADY FINITE AMPLITUDE MOTIONS 

We set  0
t


=


 , the above system becomes

  
 

B=0                                                                                       (44)                                

2 2

1 2 4(1 ) 0a T SD A aRa A aRa A + + − =
                   (45)

 

2

1 2 1 3( ) 0iaA R A aA A + − + =
         (46) 

2

3 1 2( 4 ) 0
2

i

a
R A A A


− + =           (47) 

1 2 2

1 4 1 5 2 0e raA L A aA A S A  −+ + + =          (48) 

2 1 2

5 1 4 34 4 0
2

e r

a
L A A A S A


 − − + =          (49) 

Numerical method was used to solve the above nonlinear differential equation to find the amplitudes. On solving for the 

amplitudes in terms of 1A  ,we obtain 2 3 4 5, , ,A A A A  . 

 

4.2.    STEADY HEAT AND MASS TRANSPORTS 

In the study of this type problem, quantification of heat and mass transport is very important. 

If   H and J are the rate of heat and mass transport per unit area,then  

11 0
total

z

T
H K

z
=


= −  


           (50) 

21 0 22 0
total total

z z

T S
J K K

z z
= =

 
= −   −  

 
         (51) 

Where the angular bracket corresponds to a horizontal average and  

0 ( , , )total

z
T T T T x z t

d
= − +                 (52) 

0 ( , , )total

z
S S S S x z t

d
= − +           (53) 

Substituting Eq. (36)-(37) into Eq. (53) and using the resultant Eq. (50), (51) we  get 
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11
3(1 2 )

K T
H A

d



= −           (54) 

 22
5 3(1 2 ) (1 2 )r e

K S
J A S L A

d
 


= − + −         (55)  

 

The Nusselt number and Sherwood number , which denotes the rate of heat and mass transports respectively, are defined by 

3
11

(1 2 )
H

Nu A
K T

d

= = −


      (56) 

5 3
22

(1 2 ) (1 2 )r e

J
Sh A S L A

K S

d

 = = − + −


      (57)

 

Using the expressions Eq.(54)-(55),  and substituting 
3A , 

5A  into Eq. (56,57) ,finally the expressions for uN  ,
 hS                      

are obtained.
   

 

 

5. RESULTS AND DISCUSSION 

This paper investigates the combined effect of internal heating and Soret parameter on stationary and oscillatory convection in 

a porous medium saturated with a binary viscoelastic fluid and discusses the effects of various parameters on the onset of 

double diffusive convection. The expressions for the stationary and oscillatory modes of convection for different values of the 

parameters such as Prantdl number, relaxation parameter, retardation parameter, solute Rayleigh number, Lewis number, Soret 

parameter and Darcy number are computed, and the results are depicted in figures. The neutral stability curves in the ( ),TRa a  

plane for various parameter values are as shown in Fig. 1 and Fig. 2. We fixed the values for the parameters as Pr 10,D =  

D .1a =  ,    3iR =  1 2.8,  .1,  Ra 100,  L 2,  S .05,  S e r = = = = =   and except the varying parameter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Variation of Stationary rayleigh number with 

wave number for the different values of Ri 

 
Fig. 1: Variation of Stationary rayleigh number with 

wave number for the different values of Sr 

 
Fig. 1: Variation of Stationary rayleigh number 

with wave number for the different values of Ras 

 
Fig. 1: Variation of Stationary rayleigh number with 

wave number for the different values of aD  
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From Figs.1, 2(a), it is observed that increasing the value of internal heat source  iR , decreases the values of stationary and 

oscillatory Rayleigh number, which means that the effect of increasing the internal heat source  iR is to destabilize the system. 

In Figs.1, 2(b), the effect of Soret parameter (
rS ) is depicted, respectively for both stationary and oscillatory convection. It is 

found that an increment in the value of Soret parameter decreases the value of Rayleigh numbers for both stationary and 

oscillatory mode of convection, thus onset of convection takes place at an early point. Figs.1, 2(c) depicts the effect of solute 

Rayleigh number RaS
on the onset of convection. We find that the effect of increasing the value of RaS

is to increase the 

value of Rayleigh number RaT
thus stabilizing the system in both stationary and oscillatory modes. Further, Figs.1, 2(d) show 

that the effect of increasing the Darcy number, 
aD

 
is to increase the value of Rayleigh number RaT

, thus stabilizing the 

system that is the onset of convection will take place at a later point. However, the effect of increasing the Lewis number 
eL is 

found to increase the value of Rayleigh number for stationary mode and decrease the value for oscillatory modes, thus to 

stabilize the stationary mode of convection and destabilize the oscillatory convection [Figs.1, 2(e)].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Variation of Stationary rayleigh number with 

wave number for the different values of Le 

 
Fig. 2: Variation of Oscillatory rayleigh number with 

wave number for the different values of Ri 

 
Fig. 2: Variation of Oscillatory rayleigh number with 

wave number for the different values of Sr 

 
Fig. 2: Variation of Oscillatory rayleigh number with 

wave number for the different values of Ras 

 
Fig. 2: Variation of Oscillatory rayleigh number with 

wave number for the different values of Da 

 
Fig. 2 : Variation of Oscillatory rayleigh number with 

wave number for the different values of Le 
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Also, from Figs. 2(f, g), we find that the oscillatory Rayleigh number decreases on increasing the value of the relaxation 

parameter 
1 and Prandtl number PrD

, indicating that the effect of relaxation parameter and the Prandtl number is to destabilize 

the system. Thus, the oscillatory convection takes place at an early point. However, from Fig.2 (h), the effect of retardation 

parameter 
2 is found to stabilize the system, thus opposite to that due to  

1.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, we fix the values of the parameters as RaS = 100, eL = 2, aD =.1, rS = .05 and  iR = 3 to compute the heat and mass 

transports across the porous medium. The results have been obtained for steady state motion, in terms of the Nussult and 

Sherwood numbers and depicted in the Figs.3, 4 respectively. It is found that the steady state values of uN and hS approach 3 

 
Fig. 2: Variation of Oscillatory rayleigh number with 

wave number for the different values of 1  

 
Fig. 2: Variation of Oscillatory rayleigh number with 

wave number for the different values of Prd 

 
Fig. 2 : Variation of Oscillatory rayleigh number with 

wave number for the different values of 2  

 
Fig. 3: Variation of Nusselt number with rayleigh 

number for the different values of  Sr 

 
Fig. 3: Variation of Nusselt number with rayleigh 

number for the different values of  Ri 

 

 
Fig. 3: Variation of Nussult number with rayleigh 

number for the different values of  Le 
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as RaT
increases. Further, it is found from Figs.3,4(a) that the value of 

uN decreases, while that of 
hS increases on increasing 

the values of Soret parameter 
rS This shows that the effect of Soret parameter is to decrease the heat transport, thus stabilizing 

the system and increase the mass transport in the system. In Figs. 3(b, c) and 4(b, c), it is found that heat and mass transports 

increase on increasing  iR and
eL , thus destabilizing the system. However, RaS

has a stabilizing effect on the system as heat 

and mass transport decrease on increasing the value of RaS
 [Fig.3, 4(d)]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Variation of Sherewood number with rayleigh 

number for the different values of  Sr 

 
Fig. 4: Variation of Sherewood number with rayleigh 

number for the different values of  Ri 

  
Fig. 4: Variation of Sherewood number with rayleigh 

number for the different values of  Ras 

 

 
Fig. 4: Variation of Sherewood number with rayleigh 

number for the different values of  Le 

 

 
Fig. 3: Variation of Nussult number with rayleigh 

number for the different values of  Ras 
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6. CONCLUSIONS 

Effects of Soret parameter and internal heat source on double diffusive convection in a binary viscoelastic fluid saturated 

porous layer, heated and salted from below, is investigated analytically using linear and nonlinear stability analysis. Following 

conclusions are drawn: 

 

1)  The Internal heat source  iR
 
and Soret parameter 

rS have destabilizing effect on the system in both stationary and 

oscillatory modes of convection.  

2) The Darcy number 
aD and Solute Rayleigh number RaS

have stabilizing effect on the both stationary and 

oscillatory convection. 

3) The Lewis number 
eL has stabilizing effect on stationary mode of convection while destabilizing effect on oscillatory 

mode of convection. 

4)  Relaxation parameter 
1  and Prandtl number PrD

have destabilizing effect, while retardation parameter 
2 has 

stabilizing effect on the oscillatory convection.  

5) Increments in Lewis number eL and internal Rayleigh number  iR
 
increase, while in RaS decrease heat and mass 

transports in the system.  

6)   Effect of Soret parameter 
rS  is to decrease the heat transfer and increase the mass transfer in the system. 
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