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Abstract - In this paper we illustrate the new existence results for a nonlinear amti-periodic first order problem using a 

Leray-Schauder alternative. We give the definitions of upper and lower solution. Coupled upper and lower solution are 
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I.INTRODUTION 

     In this paper we study an anti-periodic for first order differential equation. Anti-periodic problem have been studied 

extensively in the last ten year. 

    Sometimes we have a connection between anti-periodic and periodic problem. For example any T-antiperiodic solution gives 

rise to a 2T-periodic solution if the nonlinearity f satisfies some symmetry condition.  

    Considre the following nonlinear anti-periodic boundary value problem  

𝑧′(𝑡) =  𝑓(𝑡, 𝑧(𝑡)) , a.e.  𝑡 ∈ 𝐼 , 
𝑧(0) = −𝑧(𝑇),    𝑇 > 0 and 𝐼 = [𝑂, 𝑇]                           (1) 

Where 𝑓: 𝐼 × ℝ → ℝ is a 𝐿′ −Caratheodory function, i.e. , f satisfies  

▪ For every 𝑥 ∈ ℝ, 𝑓(∙, 𝑥) is Lebesgue measurable on𝐼. 
▪ For a.e. 𝑡 ∈ 𝐼, 𝑓(𝑡, ∙) is continuous onℝ. 

▪ For every 𝑅 > 0 there exists 𝜑 ∈  𝐿′(𝐼) such that |𝑓(𝑡, 𝑥)| ≤  𝜑(𝑡) for a.e. 𝑡 ∈ 𝐼 and all 𝑥 ∈ ℝ with |𝑥| ≤ 𝑅.  

 

           Throughout this paper, 𝐶(𝐼) denotes the space of continuous functions on 𝐼  and 𝐴𝐶(𝐼) the of absolutely continuous 

functions on 𝐼. For 𝑧 ∈ 𝐶(𝐼) we consider the usual norm   

∥ 𝑧 ∥0= 𝑠𝑢𝑝𝑡∈𝐼|𝑧(𝑡)|. 
     In the space 𝐶(𝐼) we also consider the usual pointwise partial ordering. In such a case we define the interval  

[𝑝, 𝑞] = {𝑧 ∈ 𝐶(𝐼): 𝑝 ≤ 𝑧 ≤ 𝑞}. 
     We say that a functions 𝑧: 𝐼 → ℝ is a solution to (1) if 𝑧 ∈ 𝐴𝐶(𝐼) and it solves (1). 

 

II. BASIC EXISTENCE THEORY 

     Let 𝛿 ∈ ℝ, 𝐹: 𝐼 × ℝ → ℝ  a 𝐿′ − Caratheodory function and consider the problem   

𝑧′(𝑡) + 𝛿𝑧(𝑡) = 𝐹(𝑡, 𝑧(𝑡)), a.e. 𝑡 ∈ 𝐼, 

                                     𝑧(0) = −𝑧(𝑇).                                                                 (2) 
 

      If 𝐹(𝑡, 𝑧) = 𝑓(𝑡, 𝑧) + 𝛿𝑧 and 𝑧 is a solution to (2) then 𝑧 is a solution to (1). Furthermore, it is easy to show that solving (2) 

is equivalent to finding a 𝑧 ∈ 𝐶(𝐼) that satisfies 𝑧 = 𝐴𝑧. Here 𝐴: 𝐶(𝐼) → 𝐶(𝐼) is given by  

                                 [𝐴𝑧](𝑡) =  ∫ 𝑔(𝑡, 𝑠)𝐹(𝑠, 𝑧(𝑠))𝑑𝑠,
𝑇

0
                                (3) 

Where g is the Green’s function  

       

𝑔(𝑡, 𝑠) =

{
 

 
𝑒𝛿(𝑇−𝑡+𝑠)

𝑒𝛿𝑇 + 1
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇

−𝑒𝛿(𝑠−𝑡)

𝑒𝛿𝑇 + 1
, 0 ≤ 𝑡 < 𝑠 ≤ 𝑇

 

Note:  

     If 𝐹(𝑡, 𝑢) = 𝜎(𝑡) problem (2) is linear and solvable for each 𝛿 ∈ ℝ and the solution is given by expression (3). 

Theorem 1 

      Let C be a complete convex subset of a locally convex Hausdorff linear topological space E and U an open subset of C with 

𝑝 ∈ 𝑈. In addition let  𝐹: 𝑈̅ → 𝐶 be a continuous, compact map. Then either  

       (A1) F has a fixed point in 𝑈; or  

       (A2) there is a 𝑧 ∈ 𝜕𝑈 and 𝜇 ∈ (0,1), with 𝑧 = 𝜇𝐹(𝑧) + (1 − 𝜇)𝑝.  
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      In addition to applying the Leray-Schauder alternative, we will need a compactness criterion for a set 𝑆 ⊂ 𝑃𝐶 (𝐽, 𝑅𝑛).  
Theorem 2  

      Suppose that there exist a continuous and nondecreasing function 𝜓: [0,∞) → (0,∞) and a function 𝑄 ∈ 𝐿1(𝐼) with  

|𝐹(𝑡, 𝑧)| ≤ 𝑄(𝑡)𝜓(|𝑧|), for a.e.𝑡 ∈ 𝐼 and all 𝑧 ∈ ℝ. 

In addition suppose that   

                                                        𝑠𝑢𝑝𝑐≥0
𝑐

𝜓(𝑐)
> 𝑘0                                                                                     (4)                                                                

With  

                                                   𝑘0 = 𝑠𝑢𝑝𝑡∈𝐼 ∫ |𝑔(𝑡, 𝑠)|𝑄(𝑠)𝑑𝑠
𝑇

0
. 

Then (1) has at least one solution in 𝐴𝐶(𝐼).  
 

     Proof:   

     Form (4) there exists 𝑀 > 0 with 

                                                   
𝑀

𝜓(𝑀)
> 𝑘0.                                                                                       (5)                                                                          

     For 𝜇 ∈ (0,1), let 𝑢 ∈ 𝐴𝐶(𝐼) be any solution of (4). Then, for 𝑡 ∈ 𝐼 we have  

                                           𝑧(𝑡) = 𝜇 ∫ 𝑔(𝑡, 𝑠)𝐹(𝑠, 𝑧(𝑠))𝑑𝑠
𝑇

0
  

 And so  

             |𝑧(𝑡)| ≤ 𝜇 ∫ |𝑔(𝑡, 𝑠)𝐹(𝑠, 𝑧(𝑠))|𝑑𝑠
𝑇

𝑜
 

                        ≤ ∫ |𝑔(𝑡, 𝑠)|𝑄(𝑠)𝜓(|𝑧(𝑠)|)𝑑𝑠
𝑇

0
 

                        ≤ (∥ 𝑧 ∥0) ∫ |𝑔(𝑡, 𝑠)|𝑄(𝑠)𝑑𝑠.
𝑇

0
  

Consequently, 

                       ∥ 𝑧 ∥0≤ 𝑘0𝜓(∥ 𝑧 ∥0) 
And so 

                           ∥ 𝑧 ∥0≠ 𝑀 form (5).     

 

III. UPPER AND LOWER SOLUTIONS 

      The following definition are lower and upper solution is presented.  

Definition: 1     

     We say that a pair of functions  

𝛼, 𝛽 ∈ 𝐴𝐶(𝐼) 
are related lower and upper solutions for the anti-periodic problem (1) if  

                                                          𝛼(𝑡) ≤ 𝛽(𝑡),   𝑡 ∈ 𝐼                                                                         (6) 

                                     𝛼′(𝑡) ≤ 𝑓(𝑡, 𝛼(𝑡)),  a.e.  𝑡 ∈ 𝐼 ,    𝛼(0) ≤ −𝛽(𝑇),                         (7) 

and 

                                      𝛽′(𝑡) ≥ 𝑓(𝑡, 𝛽(𝑡)),  a.e.  𝑡 ∈ 𝐼 , 𝛽(0) ≥ −𝛼(𝑇).                            (8) 

      The following is the first result, to our knowledge, that establishes the validity of the lower and upper solutions method for 

(1) without monotone criteria.  

 

 

Theorem: 3  

     Suppose that there exist 𝛼, 𝛽 ∈ 𝐴𝐶(𝐼) related lower and upper solutions for (1). Then (1) has at least one solution between 

𝛼 𝑎𝑛𝑑 𝛽.  

Proof:  

     Let 𝜆 > 0 and consider the modified problem  

𝑧′(𝑡) + 𝛿𝑧(𝑡) = 𝐹∗(𝑡, 𝑧(𝑡)),   a.e.   𝑡 ∈ 𝐼, 

                             𝑧(0) = −𝑧(𝑇),                                                                (9)                                                                                     

With  

                                        𝐹∗(𝑡, 𝑧) = {

𝑓(𝑡, 𝛽(𝑡)) +  𝛿𝛽,               𝑖𝑓 𝛽(𝑡) < 𝑧

𝑓(𝑡, 𝑧) + 𝛿𝑧,       𝑖𝑓 𝛼(𝑡) ≤ 𝑧 ≤ 𝛽(𝑡)   

𝑓(𝑡, 𝛼(𝑡)) + 𝛿𝛼(𝑡),      𝑖𝑓 𝑧 < 𝛼(𝑡).

 

      Then, by the Schauder fixed point theorem, we conclude that (9) has a solution 𝑢, since in this case the operator A defined 

in (3) is continuous and compact.  

       Now we will show that this solution 𝑢 satisfies 𝛼(𝑡) ≤ 𝑧(𝑡) ≤ 𝛽(𝑡) for 𝑡 ∈ 𝐼. Assume that 𝑧 − 𝛽 attains a positive maximum 

on 𝐼 at 𝑠0. We shall consider two cases:  

Case 1. 𝑠0 ∈ (0, 𝑇].  
Then there exist ℸ ∈ (0, 𝑠0) such that  

    0 ≤ 𝑧(𝑡) − 𝛽(𝑡) ≤ 𝑧(𝑠0) − 𝑠0,  for all 𝑡 ∈ [ℸ, 𝑠0].  
This yields a contradiction, since 

     𝛽(𝑠0) − 𝛽(ℸ) ≤ 𝑧(𝑠0) − 𝑧(ℸ)  

                            = ∫ [𝑓(𝑠, 𝛽(𝑠))
𝑠0
ℸ

− 𝛿(𝑧(𝑠) − 𝛽(𝑠))]𝑑𝑠 

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org


© IJEDR 2018 | Volume 6, Issue 3 | ISSN: 2321-9939 

 

IJEDR1803102 International Journal of Engineering Development and Research (www.ijedr.org) 598 

 

                            < ∫ 𝛽′(𝑠)𝑑𝑠
𝑠0
ℸ

 

                            = 𝛽(𝑠0) − 𝛽(ℸ).    
Case 2.  𝑠0 = 0. 

Then 0 < 𝑧(0) − 𝛽(0). Note also that 𝑧(𝑇) − 𝛼(𝑇) < 0. Since  

         𝑧(𝑇) = −𝑍(0) < −𝛽(0) ≤ 𝛼(𝑇). 
Moreover by hypothesis 𝛼(0) ≤ 𝛽(0) < 𝑧(0). Therefore, there exist ℸ ∈ (0, 𝑇) with 𝑧(𝑡) − 𝛼(𝑡) < 0 for all 𝑡 ∈ (ℸ, 𝑇]  and 

𝑧(ℸ) − 𝛼(ℸ) = 0. Now we have  

         𝑧(𝑇) − 𝑧(ℸ) = ∫ [𝑓(𝑠, 𝛼(𝑠)) +  𝛿(𝛼(𝑠) − 𝑧(𝑠))]𝑑𝑠
𝑇

ℸ
 

                             > ∫ 𝛼′(𝑠)𝑑𝑠
𝑇

ℸ
 

                             = 𝛼(𝑇) − 𝛼(ℸ) 
Which contradicts  

         𝑧(𝑇) − 𝛼(𝑇) < 0.  

 Consequently,  

         𝑧(𝑡) ≤ 𝛽(𝑡) for all𝑡 ∈ 𝐼. Similarly, we can show that 𝛼 ≤ 𝑧 on 𝐼.   
 

IV. COUPLED UPPER AND LOWER SOLUTIONS 

       We recall the equation (2) with 𝐹(𝑡, 𝑧) = 𝑓(𝑡, 𝑧) + 𝛿𝑧 and we consider again the operator 𝐴 defined in (3). Note that 𝑔 is 

not of constant sign on 𝐼 × 𝐼. Hence. 𝑔 = 𝑔− − 𝑔− with  

𝑔+(𝑡, 𝑠) = max {𝑔(𝑡, 𝑠), 0} 
 and    

𝑔−(𝑡, 𝑠) = max {−𝑔(𝑡, 𝑠), 0} 
And we can write the operator given in (3) as  

                            [𝐴𝑧](𝑡) = ∫ 𝑔+(𝑡, 𝑠)𝐹(𝑠, 𝑧(𝑠))𝑑𝑠 − ∫ 𝑔−(𝑡, 𝑠)𝐹(𝑠, 𝑧(𝑠))𝑑𝑠,
𝑇

0

𝑇

0
                    (10) 

or equivalently as  

[𝐴𝑧](𝑡) = ∫  
𝑒𝛿(𝑇−𝑡+𝑠)

𝑒𝛿𝑇+1
𝐹

𝑡

0
(𝑠, 𝑧(𝑠))𝑑𝑠 − ∫

𝑒𝛿(𝑠−𝑡)

𝑒𝛿𝑇+1
𝐹(𝑠, 𝑧(𝑠))𝑑𝑠

𝑇

𝑡
. 

         Motivated by the expression (10) and the results of [7] we introduce the following operators. For 𝜏 ∈ 𝐶(𝐼), 𝑡 ∈ 𝐼, we define  

[𝐴+𝜏](𝑡) = ∫ 𝑔+(𝑡, 𝑠)𝐹(𝑠, 𝜏(𝑠))𝑑𝑠
𝑇

0
, 

and  

[𝐴−𝜏](𝑡) = ∫ 𝑔−(𝑡, 𝑠)𝐹(𝑠, 𝜏(𝑠))𝑑𝑠
𝑇

0
. 

Note:  

         𝐴+: 𝐶(𝐼) → 𝐶(𝐼) and 𝐴−: 𝐶(𝐼) → 𝐶(𝐼) are continuous and compietely continuous. 

 

 

 

Definition:2  

        We say that a pair of functions 𝛼, 𝛽 ∈ 𝐶′(𝐼) and coupled lower and upper solutions for the anti-periodic problem (1) if (6) 

holds and  

                                                                 𝛼 ≤ 𝐴+𝛼 − 𝐴−𝛽,                                      (11)                                                                                            

and  

                                                                  𝛽 ≥ 𝐴+𝛽 − 𝐴−𝛼.                                   (12)                                                                   

The relation between both definitions is given by the following result.    

Theorem: 4 

     Suppose that 𝛼, 𝛽 are a pair of related lower and upper solutions for the anti-periodic problem (1). Then 𝛼, 𝛽 are a pair of 

coupled lower and upper solutions for (1). In other words, if 𝛼, 𝛽 are lower and upper solutions in the sense of  Definition 1, 

then they are lower and upper solutions in the sense of Definition 2.  

Proof : For every 𝑡 ∈ 𝑇, we have that  

[𝐴+𝛼](𝑡) − [𝐴−𝛽](𝑡) =  ∫ 𝑔+(𝑡, 𝑠)𝐹(𝑠, 𝛼(𝑠))𝑑𝑠 − ∫ 𝑔−(𝑡, 𝑠)𝐹(𝑠, 𝛽(𝑠))𝑑𝑠
𝑇

0

𝑇

0

 

By using the theorem 4 ,equation (11) and the definition of coupled lower and upper solutions, we get 
𝑒𝛿𝑇

 𝑒𝛿𝑇+1
𝛼(𝑡) +

1

𝑒𝛿𝑇+1
𝛼(𝑡) =  𝛼(𝑡). 

Therefore, (12) holds. The validity of (13) is proved analogously. 

 

V. CONCLUSIONS 

In this paper, we introduced new comparison theorems for investigation of the anti-periodic boundary value problem for 

nonlinear first order ordinary differential equations. Our techniques permits to relax restrictions usually imposed on the coupled 

upper and lower solution. So that our results are of high generality.  
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