
© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502072 International Journal of Engineering Development and Research (www.ijedr.org) 382

Design and Verification of a 16-bit RISC Processor

using Universal Verification Methodology (UVM)
1
Ajit Shridhar Gangad,

2
Prof.C.Prayline Rajabai

1
M.Tech-VLSI Design,

2
Assistant Professor

School of Electronics Engineering

VIT University, Vellore, India

__

Abstract - This paper presents Design of a 16-Bit RISC Processor supporting Arithmetic ,Logical, Data transfer, Branch

instructions such as ADD , MUL , SUB , AND , OR , EXOR , EXNOR , RD , WR , BR , BRZ , NOT , NOP.RISC Processor

supporting High Speed , Low Area, Low Power Uniform Carry Select Adder (UCSLA), High Speed 16-bit Hybrid

Wallace Tree Multiplier .The Design is synthesized with 45nm library. Physical Design flow is performed with Cadence

SoC Encounter. Verification environment is prepared by using Universal verification methodology(UVM) is most widely

used methodology by verification industry word wide . Verification environment created in UVM which is reusable,

efficient and well structured. The 16-bit RISC processor is a Design under test (DUT).The environment created in UVM is

completely wrap a DUT. Assertion coverage is found to be 100% , Code Coverage consists of statement, Branch, Toggle,

Expression coverage which is found to be 98.30%.Functional Coverage is obtained by writing cover-groups is found to be

99.87%.Overall coverage found to be 99.39%.

Key Words - System Verilog ,DUT, UVM, Functional Coverage , Assertion Based Verification ,RISC

__

I.INTRODUCTION

Among all kinds of CPU in use today, the Reduced Instruction Set or RISC CPU has the majority market share. It is most

commonly used in embedded systems, which are in almost every consumer products on the market. RISC CPUs are basic in

nature and offers low-power consumption and small size. They are sometimes referred to as load-store processor because of the

basic mechanics upon which it operates. The idea of RISC CPU is to reduce the complexity of the system and increase the speed.

Any complex operation can be split into smaller chucks that can be calculated simultaneously in most cases. Other important

features of the RISC CPU include uniform instruction coding, which allows faster coding. A good example is that the op-code is

always in the same bit position in each instruction, which is always one word long. Another advantage is a homogeneous register

set, which allows any register to be used in any context and simplify compiler design. Lastly, complex addressing modes are

replaced by sequences of simple arithmetic instructions. The convenience of the RISC processor is a direct explanation why it

dominates the CPU market.

II.ARCHITECTURE

Reduced instruction-Set computers (RISC) are designed to

have small set of instruction that executes in short clock cycles with small number of cycle per instruction. Machine consists of

three functional units: processor ,controller ,memory as shown in Figure 1.

Following steps are performed by this architectures-

[1]fetching instruction from the SRAM

[2]Decoding

[3]Execution

The 16-bit RlSC processor having features such as 16-bit Uniform carry select adder (UCSLA) is designed by using single carry

skip adder (CSKA) and binary to excess-1 converter (BEC) instead of using one set of ripple carry adder (RCA) to reduce area,

power and delay. 16-bit High Speed Hybrid Wallace tree multiplier is configured with the help of novel compressor techniques

such as 3:2 compressor, 4:2 compressor, 5:2 compressor.

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502072 International Journal of Engineering Development and Research (www.ijedr.org) 383

R0

R1

R2

R3

Mux_1

PC

IR

Reg_Y

ALU

Reg_Z

Memory

Mux_2
Add_R

Controller

ProcessorLoad_R0

Load_R1

Load_R2

Load_R3

Load_PC

Inc_PC

Instruction

Sel_Bus_1_Mux

Load_IR

write

Sel_Bus_2_Mux

zero

Load_Reg_Z

Load_Reg_Y

Load_Add_Reg

Bus_1

Bus_2

0 1 2 3 4

0 1 2

mem_word

address

16

16

16

16

16

16

16

16

16
16

16

16

Figure 1. RISC Processor Architecture

A. processor

Processor includes registers, data paths ,control lines and

ALU capable of performing arithmetic and logical operations

on its operands ,subject to op-codes are hold in instruction register. A multiplexer Mux_1 determine source of data

bound on Bus_1, second Mux_2 determine source of data for

Bus_2.inputs to the Mux_1 are R0, R1, R2, R3, PC as shown

in architecture .The contents of Bus_1 can be steered to the

ALU, Mux_1 and memory unit .Thus, an instruction can be fetched from memory ,placed on Bus_2, and loaded into instruction

register .A word of data can be fetched from

memory ,and steered to GPIO or to the operand register

(Reg_Y) prior to the operation of ALU .Result of ALU placed in Bus_2,loaded into a register and subsequently placed in the

memory unit. A dedicated register (Reg_Z) holds a flag indicating that result of ALU operation is 0.

B. Controller

Following functions are performed by the control unit-

1. Specifying when to load specific register

2. Choose multiplexer among the two, depending upon the requirement of specific bus

3. Specifying when data to be loaded into the SRAM

4. Controlling all buses according to the requirement.

Timing of all activities are determined by controller .Following Table 1 shows the control signals and action corresponding to it.

Table 1 Control Signals and Actions

Control Signal Action

Load_Add_Reg Load the address register

Load_PC Load Bus_2 to the PC

Load_IR Load Bus_2 to the IR

Inc_PC Increment PC

Sel_Bus_1_Mux Select mux for Bus_1

Sel_Bus_2_Mux Select mux for Bus_2

Load_R0 Load GPIO R0

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502072 International Journal of Engineering Development and Research (www.ijedr.org) 384

Load_R1 Load GPIO R1

Load_R2 Load GPIO R2

Load_R3 Load GPIO R3

Load_Reg_Y Load Bus_2 to Reg_Y

Load_Reg_Z Stores the output of ALU to

Reg_Z

Write Memory write

C. ASM Charts

ASM charts in Figure 2 and Figure 3 shows the activities to be performed during execution of each instruction.

Figure 2. ASM Chart for Arithmatic and logical Instruction

Figure 3. ASM Chart for Branch Instructions

D. INSTRUCTION SET

Instruction set of the RISC processor is divided into two categories short instruction and the long instruction .This can be

explained as follows

S_fet1/Sel_PC

Sel_Bus_1,

Load_Add_R

1

Sel_R0,

Sel_Bus_1,

Load_Reg_Y

S_ex1

4

Instruction fetch

Instruction Decode Execute

Dest=R0

Dest=R1

Dest=R2

Sel_R0,

Sel_ALU,

Load_R0,

Load_Reg_Z

Sel_R1,

Sel_ALU,

Load_R1,

Load_Reg_Z

Sel_R2,

Sel_ALU,

Load_R2,

Load_Reg_Z

Sel_R3,

Sel_ALU,

Load_R3,

Load_Reg_Z

S_idle

0

rst

S_fet2/Sel_Mem,

Load_IR,

Inc_PC

2

S_dec

3

NOP

ADD

SUB

MUL

AND

OR

EXOR

EXNOR

Src=R0

Src=R1

Src=R2

Sel_R2,

Sel_Bus_1,

Load_Reg_Y

Sel_R1,

Sel_Bus_1,

Load_Reg_Y

Sel_R3,

Sel_Bus_1,

Load_Reg_Y

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

1

1

0

0

0

1

1

1

S_fet1/Sel_PC

Sel_Bus_1,

Load_Add_R

1

BR

Sel_PC,

Sel_Bus_1,

Load_Add_R

S_br1/Sel_Mem

Load_Add_R

Instruction fetch

Instruction Decode Execute

Sel_Mem

Load_PC

S_idle

0

rst

S_fet2/Sel_Mem,

Load_IR,

Inc_PC

2

S_dec

3

NOP

BR

0

0

1

1

1 S_br2

10

BRZ

1

0

Zero

S_halt

11

Inc_PC
0

1

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502072 International Journal of Engineering Development and Research (www.ijedr.org) 385

1) Short instruction (1 byte instruction):: This consisting of most significant 4 bits as op-code and last 4 bit are used for

specifying register as shown in Table 2

Table 2. short Instruction

Op-code Source Destination

0 0 1 0 0 1 1 0

Instructions are

1. NOP-No any operation

2. ADD-Addition of source and destination register and storing data in to the destination register

3. SUB- Subtract of source register from destination register and storing data in to the destination register

4. AND/OR/EXOR/EXNOR-bitwise operation of source and destination register and stores data in destination register

5. NOT-bitwise negation performed

2) Long instruction(2 byte instruction):: This consisting of most significant 4 bits as opcode and afterward 4 bit are used for

specifying register and last 8 bits specifies address of memory location as shown in Table 3

Table 3. long Instructions

Opcode Source destination

0 1 1 0 0 1 Don’t

care

Don’t care

Address

0 0 0 1 1 1 0 1

Instructions are

1. RD-loads destination register with the address specified by second byte of instruction.

2. WR-write source register data into the address specified by second byte of instruction.

3. BR-branching occurs by addressing program counter to the SRAM memory

4. BRZ- branching occurs by addressing program counter to the SRAM memory if zero flag register asserted list of

instruction to be executed as shown in Table 4.

Table 4. All Instructions details

Instruction Opcode src dest Action

NOP 0000 - - None

ADD 0001 src dest dest<=src+dest

SUB 0010 src dest dest<=src-dest

MUL 1001 src dest dest<=src*dest

AND 0011 src dest dest<=src&dest

NOT 0100 src dest dest<=~src

OR 1010 src dest dest<= src|dest

EXOR 1011 src dest dest<= src^dest

EXNOR 1100 src dest dest<=~(src^dest)

RD 0101 - dest deat<=memory[Add_R]

WR 0110 src - memory[Add_R]<=src

BR 0111 - - PC<=memory[Add_R]

BRZ 1000 - - PC<=memory[Add_R]

HALT 1111 - - Halt execution until

reset

Table 5-Synthsis Results

Area of Design 34833 um2

Number of Gates in Design 9243

Leakage power with low power constraints 1098.874 nW

Dynamics power with low power constraints 866654.321 nW

Total power with low power constraints 867753.195 nW

Operating Frequency 200Mhz

III.PHYSICAL DESIGN

The Designed RISC Processor is synthesized with Cadence RTL Compiler. Synthesis Results are shown in Table 5 .

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502072 International Journal of Engineering Development and Research (www.ijedr.org) 386

 With help of SoC Encounter Physical Design Steps such as Floor-planning, Placement, Pin assignment, Routing are performed.

Figure 4 and Figure 5 shows synthesized hardware and Physical design output respectively.

Figure 4. Synthesized Hardware

Figure 5. Physical Design Output

IV. UVM METHODOLOGY ARCHITECTURE

Figure 6. UVM Architecture

TOP LEVEL MODULE

UVM_TEST

UVM_ENVIRONMENT

SUBSCRIBER SUBSCRIBER SUBSCRIBER

UVM_AGENT

SEQUENCER

DRIVERMONITOR

DUT

INTERFACE
INTERFACE

TRANSACTIONS

ANALYSIS

PORT

TRANSACTIONS

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502072 International Journal of Engineering Development and Research (www.ijedr.org) 387

UVM Test Bench :

Test bench of UVM consisting of verification components which can be used to force stimulus to the Design under test(DUT) to

check the 16-bit RISC Processor architecture. An UVM architecture is as shown in figure 6.

 UVM Verification Components :

1]Design Under Test(DUT)-Design can be described with the help of hardware description language such as Verilog, VHDL

which is intended to be verified. DUT describes whole implementation features and functionality of design.

2]Interface- Interface is a connection between DUT and verification environment (monitor and driver). There can be multiple

interfaces depending upon number of agents. It is written in System Verilog. Interface is like a bus of wire which converts

transactions to pin level data and vice-versa.

3]Virtual Interfaces- It separates abstract models from actual signals of the design. Virtual interface instance can be defined in

multiple subprograms of verification environment. It dynamically controls the set of signals associated with subprogram which

will pass same set of data to all verification components.

3]Transactions- uvm_transaction is derived from uvm_sequence_item class. In test many data items need to be generated and

send to the DUT via driver. Data item fields are randomized using System Verilog constraints. With many number of different

constraints different test cases can be created. Communication between sequencer to driver , monitor to subscriber is through

transactions

4]Agents –uvm_agent class is extended from a uvm_components base class .UVM agent consists of Monitor , sequencer ,Driver.

Communication between driver to DUT, DUT to monitor is through pin level interface. Generally DUTs have number of

interfaces, each of which has their own protocol. UVM agent provides designer to generate and monitor signal level transactions.

5] Sequencer And Sequence – A sequence class is derived from uvm_sequence class.uvm_sequencer class is extended from

uvm_components. uvm_sequencer controls the flow of transaction generation. uvm_sequencer does the generation of this

sequence of transaction .For different test cases we can write different sequences with the help of constraint randomization. Each

sequence is called by sequencer which takes each sequence and converts it into transaction. Further, driver which drives

transaction to DUT.

6]Driver – Driver class is formed by extending uvm_driver base class. Driver takes the transactions from the sequencer by using

seq_item_port . These transactions will be driven to DUT through interface. Timing information can be written in run phase with

the help of different tasks such as resetting of DUT and setting configuration of DUT.. An instance of the driver class is created in

The agent class and the sequencer is connected to it.

7]Monitor- Monitor class is derived from the uvm_monitor base class. Instance of monitor is created in agent and connected to

the DUT through interface. Basically its functionality is to collects data from interface and convert it into transactions .Converted

transactions can be provided to subscriber such as scoreboard through Analysis port.

8]Scoreboard –Scoreboard class is derived from uvm_scoreboard base class. Scoreboard has 2 analysis imports. One is used to

for getting the packets from reference model and other from the monitor analysis port transactions. Packets comparison is carried

out with compare function of transaction class and if doesn’t match error signal is asserted. Covergroup is written with different

coverpoints according to design features. Covergroup is used to define Functional coverage of design.

9]Environment –Environment class is formed with the extension of uvm_env class which is used to implement verification

environments of UVM. Simulation steps such as building components ,connection between the components , starting the

components need to be specified, which is possible through uvm_env base class. It has methods to formalize phases of simulation.

All methods are virtual which are extended from environment. virtual sequencer that is used to run sequences . environment is the

top level of the class based part of the testbench.

10]Testcases – Different test case scenarios for design are defined in the uvm_test class. Instance of environment is defined in

Test case which defines environment object and defines specific functionality. Physical interface in top module is connected to

virtual interface of environment in Test cases.

11]Top Module –Physical interface is instantiated in this top module. Connection between virtual interface and physical interface

is defined with configuration database settings. DUT is instantiated and hooked up with interface .Clock generator is also defined

here .With the help of run_test() method we can call all possible test cases . The test name can be passed as a command line

argument during simulation which is having more precedence.

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502072 International Journal of Engineering Development and Research (www.ijedr.org) 388

V.UVM CLASS HIERARCHY

Different components in UVM are derived from either uvm_object or uvm_components as shown in Figure 7.

Figure 7. UVM Hierarchy

1]Build Phase: This phase is used to build various ports/exports/ class objects by using constructor.

2]Connect Phase: This phase connects all port/exports of various objects/components.

3]End of Elaboration: Configuration of different components is done in this phase.

4]Start of Simulation : To print various messages and topology of environments.

5]Run Phase:This phase is executed by calling task where multiple threads are concurrently called. Timing delays can be inserted

in this phase only.

VI.VERICATION PLAN

The verification plan defines what exactly needs to be verified. The 16-bit RISC processor is divided into three sub modules such

as Control Unit, Memory Unit, Processing Unit. Different test case scenarios for these three sub modules are written in different

sequences and are as follows:

A] Test case scenarios for Control Unit:

1]Reset Condition-it should enter to S_idle state

2]Instruction fetch cycle check -It should enter to S_fet1 & S_fet2 state respectively

3]Instruction fetch cycle check -Whether appropriate Control Signal asserted or not

4]Instruction Decode Cycle Check -It should enter to S_dec state

5]Instruction Decode Cycle Check -Selecting mentioned source register

6]Instruction Decode Cycle Whether appropriate Control Signal asserted or not

7]Instruction Execute Cycle Check -it should enter to S_ex1 state

8]Instruction Execute Cycle Check -Selecting mentioned Destination register

9]Instruction Execute Cycle Check -Whether appropriate Control Signal asserted or not

10]Instruction fetch cycle check,Instruction decode cycle check,Instrction execute cycle check for

ADD,SUB,MUL,AND,NOT,OR,XOR,XNOR,RD,WR,BR, RZ,NOP instructions

B] Test case scenarios for Processing Unit:

1]Loading data from Bus to R0,R1,R2,R3 ,PC,IR ,Reg_Y , Add_R,Reg_Z after Load_R0, Load_R1, Load_R2 , Load_R3,

Load_PC, Load_IR, Load_Y,Load_Add_R , Load_Reg_Z signals assertions

2]Mux1 should change the channels according to Sel_Bus_Mux1 assertions

3]Mux2 should change the channels according to Sel_Bus_Mux2 assertions

4]ALU- Perform functionality according to opcode given to it for instructions (ADD,MUL,SUB,AND,OR,EXOR ,EXNOR

,EXNOR,NOT,NOP)

5]ALU-Alu zero flag condition check

6]PC Branching check –instructions BR,BRZ(Branch if alu output is zero)

uvm_object

uvm_report_object

uvm_transaction

uvm_sequence_item

uvm_sequence

data

structure

uvm_component

create

build

connect

end_of_elaboration

start_of_simulation

run

uvm_env

uvm_test

uvm_agent

uvm_sequencer

uvm_driver

uvm_monitor

uvm_scoreboard

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502072 International Journal of Engineering Development and Research (www.ijedr.org) 389

C] Test case scenarios for Memory Unit:

 1]A simple testcase to perform one write and read

2] Testcase to write 256 successive locations

3]Testcase is to demonstrate the simple random

4]Single Write Condition

5]Single Read operation

6] Multiple Write operation with delay at different conditions

7] Multiple Write operation without delay at different conditions

8]Multiple read Write operation with delay at different conditions

9] Multiple read Write operation without delay at different conditions.

VII.RESULTS AND DISCUSSIONS

For 16-bit RISC Processor, Instructions and data to be loaded as operand is specified in SRAM memory. One by one instruction

is called from the memory and executed in fetch1,fetch2, decode, execute1, execute2 cycles depending upon the type of

instruction. Following Figure 8 ,9 ,10 shows the Modelsim Simulation output for MUL, RD, BR instructions respectively.

Figure 7. MUL Instruction Output

Figure 8.RD Instruction Output

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502072 International Journal of Engineering Development and Research (www.ijedr.org) 390

 Figure 9.BR Instruction Output

Figure 10-256 Location Read Write Operation

For verification point of view, design is divided into three blocks Memory Unit, Control Unit and Processing Unit. Covergroup is

written with all possible cover points to get functional coverage. Cross coverage also introduced to cover shared coverpoints.

Code coverage consisting of Block coverage, Expression coverage, Toggle coverage and FSM coverage is maximized with

various test case scenarios.

1]Memory Unit-First of all for Memory unit earlier mentioned test cases passed. Figure 10 shows questasim simulation output

for 256 location write and read operations.

Questasim report shown in Figure 11 shows that, for Memory Unit 100% assertion passed,96 % Code coverage achieved and

100% functional coverage achieved with cover group and cross cover points.

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502072 International Journal of Engineering Development and Research (www.ijedr.org) 391

Figure 11-Coverage Report for Memory Unit

2]Control Unit-

Testcase scenarios mentioned in the verification plan of Control Unit are passed. Questasim Simulation Output for ADD

Instruction fetch,decode ,execute cycle is as shown in Figure 12.

Figure 12-ADD Instruction testcase Output

 Figure 13- Coverage Report for Control Unit

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502072 International Journal of Engineering Development and Research (www.ijedr.org) 392

Questasim report shown in Figure 13 shows that, for Control Unit 100% assertion passed,100 % Code coverage achieved and

99.62% functional coverage achieved with cover group and cross cover points.

3]Processing Unit-

Testcase scenarios mentioned in the verification plan of Processing Unit are passed. Questasim Simulation Output for AND

instruction is as shown in Figure 14

Figure 14-AND Instruction Testcase Output

Questasim report shown on Figure 15 shows that, for Processing Unit 100% assertion passed,98.90 % Code coverage achieved

and 100% functional coverage achieved with cover group and cross cover points.

Figure 15- Coverage Report for Processing Unit

Thus for 16-bit RISC processor on average 100 % assertions are completed, 98.3% Code Coverage achieved and 99.87 %

Functional Coverage achieved.

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502072 International Journal of Engineering Development and Research (www.ijedr.org) 393

VIII.ACKNOWLEDGEMENT

I would like to thank Prof.Prayline Rajabai for her precious and valuable guidance and also VLSI lab, VIT University for

Cadence RTL compiler, SoC Encounter, NC Launch software support.

IX.REFERENCES

[1] Seung Pyo Jung, Jingzhe Xu, Donghoon Lee, Kang-joo Kim, Koon-shik Cho,Ju Sung Park,“Design & Verification of 16 Bit

RISC Processor”,2008,IEEE.

[2] Pravin S. Mane, Indra Gupta, M. K. Vasantha,“Implementation of RISC Processor on FPGA”,2006,IEEE

[3] Mamun Bin Ibne Reaz, Md. Shabiul Islam, Mohd. S. Sulaiman,“ A Single Clock Cycle MIPS RISC Processor Design using

VHDL”.

[4] HE Jing-yu, LI Li-li, ZHU Yan-chao, YANG Wen-tao, and YANG Jian-hong, “Multiply-Accumulator Using Modified Booth

Encoders Designed for Application in 16-bit RISC Processor” ,2013 ,IMSNA.

[5] Jinde Vijay Kumar, Boya Nagaraju, Chinthakunta Swapna and Thogata Ramanjappa ,“Design and Development of FPGA

Based Low Power Pipelined 64-Bit RISe Processor with Double Precision Floating Point Unit”,2014.

[6] C.Vinoth, V. S. Kanchana Bhaaskaran, B. Brindha, S. Sakthikumaran, V. Kavinilavu, B. Bhaskar , M. Kanagasabapathy and

B. Sharath“A Novel Low Power and High Speed Wallace Tree Multiplier for RISC Processor”, 2011,IEEE

[7] P.Sadhasivam, Dr.M.Manikandan,“Low Area and High Speed Confined Multiplier using Multiplexer based Full Adder”,

IEEE,2014

[8] Haihua Shen, Heng Zhang, Tong Xu, “Verification of a Configurable Processor Core for System-on-a-Chip Designs”

[9] K. Jancy Bery , A. Beno,“Design of 64 Bit UCSLA for Low Power VLSI Application”, International Journal of Scientific &

Engineering Research, Volume 4, Issue 5, May-2013

[10] System Verilog for Verification by Chris Spear

[11] Learning UVM methodology - www.testbench.in

[12]Verification Academy Cookbooks for UVM and System Verilog -www.verificationacademy.com

Ajit Gangad was born in Maharashtra,India, in 1990. He received the B.E.Degree in Electronics and

Telecommunication Engineering from Vidya Pratishthan’s College of Engineering Baramati, Pune

University, Maharashtra, India in 2012. He is currently pursuing M.Tech in VLSI Design in Vellore

Institute of Technology (VIT) University, Tamil Nadu, India. His area of interest includes Modeling and

Simulation of Nanoscale Devices-Multigate FETs, Digital system design, RTL Design with Verilog

HDL,RTL verification using UVM.

Prof.C.Prayline Rajabai received M.E. degree in the Faculty of Information and Communication Engineering from Anna

University, Chennai, India in 2014. She received B.E. degree in Electronics and Communication Engineering from Madurai

Kamaraj University, Madurai, India in 2003. Currently, she is working as Assistant Professor in the School of Electronics, VIT

University, Vellore, India. Her research interests include FPGA/ASIC Implementation of video compression and encryption

algorithms and video processing.

