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Abstract - There has exponential been growth of mobile computing, and as the capabilities of smartphones has increased 

so have malware threats. Enterprises and individual users have extensively adopted the use of Android mobile devices, 

users can download apps from unofficial marketplaces which pose a security risk. We overview Android malware 

detection methods and showcase an architecture for a malware detection system as an in-cloud service. The architecture 

uses automated static methods to decompile apk source code and then utilizes machine learning methods to classify risky, 

malicious and benign apps according to permissions requested, and installation origin. We present our system and 

experimental results on a dataset of 300malware and 500 benign application. Our trained model provides a detection rate 

after evaluation of 89%.  

 

Index Terms - Android, Malware Detection, Classification, Machine Learning, Data Mining, Cloud Offloading. 
________________________________________________________________________________________________________  

I. INTRODUCTION 

Android has experienced rapid growth, and as a result so has malware on the platform. Android malware is divided into 

different categories, private data stealers, premium service apps and service disruption apps. New iterations of malicious apps keep 

appearing in the wild, such as the Simplelocker ransomware [1], which encrypts user information on the mobile and only releases 

the decryption key after the user has paid a certain fee. Simplelocker [12] connects to a command control server via Tor. [2] It is 

hard to keep up with new malware as they are made.  

Many applications for detecting malware are available on the Android Play store, e.g. Avast, AVG, and there is also the official 

app verification service GoogleBouncer which checks for malicious apps uploaded to the official app Play Store. In the case that an 

app installed from the Play Store is malicious and has somehow bypassed the vetting process, it can be remotely uninstalled from 

the device, but by then damage could have already been done. Android OS itself contains vulnerabilities, such as the Fake ID 

vulnerability which can be abused by malware applications, allowing other apps to impersonate trusted and signed apps without 

any user notification [3]. 

 Jian [4], found that the official bouncer had a 15.32% detection rate, and furthermore most application side loaded onto phones 

from unofficial channels were never detected. The open source attribute of Android, has become a bane to security attempts to 

circumvent malware distribution. Currently there are multiple app store which include official Google Play store [5], Amazon App 

Store [13], MoboGinie, Getjar amongst others, and his fragmentation increases attacks vectors. 

In this work, we overview methods of anti-malware techniques on Android mobiles and present an integrated system for 

analyzing, detecting and reporting Android malware. Our system uploads applications and their data to a server, which 

automatically performs static analysis on the uploaded files and extracts a set of features to be used by machine learning model to 

classify malicious apks from benign files. We conducted training and testing with a limited  dataset of 500 benign applications 

downloaded from the Google Play Store, as well as 300 malware gathered from various sources which include ContagioDump[6], 

Virusshare[7].  

 

The remainder of this paper is structured as follows. Section 2 introduces the background literature relevant to this paper, this 

includes overview of Android security, malware detection techniques and the use of machine learning in malware detection. 

Section 3 overviews the methodology and design of our detection system. In Section 4 we evaluate our experimental results. 

Finally Section 5 discusses limitations and provides an outlook on future work and concludes the paper. 

II. BACKGROUND 

Google Android [8] is an open source Linux Based operating System, it currently dominates the current smartphone OS market. 

It currently accounts for approximately 84% of smartphone sales as of 2014 4
th

 quarter see Fig 1. As it is open source it allows 

manufacturers to make changes to UI or other elements of the OS.  
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Figure 1 Worldwide Smartphone Shipments 

Android OS executables are known as apps and are written in Java, the java class files are converted into dex btyecode and then 

packaged into Android PacKage (APK) file format: an archive file built on the ZIP file format. Apps are provided via different 

market places, where users can download and install applications onto their mobiles. Google Play Store, formerly known as 

Android Market is the official and largest Android app market with over 1,3millions unique applications. Android OS also allows 

users to install from 3
rd

 party markets such as aforementioned Amazon App Store, amongst others. And this is where the danger of 

malware comes in. Android malware mainly comes in the form of malicious apps, and Android has been mainly targeted due to its 

popularity. 

 

A. Android Security 

Android security is based on Linux, the security mechanisms are offered in terms of; 1. Permissions, 2. Application Signing, 3. 

File rights, 4. Application Unique Identifier (UID), and 5. Application Sandboxing. 

Each Android app has the following core elements: 

 Manifest file, which resides in the root of the app hierarchy, app metadata, components and permissions required by 

an app are registered herein;  

 Activity – the user interface (UI) of the app is usually placed in an activity, every app must have an activity, which 

must be initiated by the user after installation of an app for it to be noticed by the system [9].  

 Services, it is an independent entity of an application, usually used to initiate services in the background and absent 

of a UI. Although it is separate to other components of the app, it always runs within the context of the parent 

activity or the broadcast receiver which initiated it;  

 Content Providers, these allow apps to share data between each other or to save information in either simple files or 

SQLite databases;  

 Broadcast Receivers, Android OS broadcasts events e.g. Boot up completion for all apps to listen to and apps can 

also broadcast events for other app to listen to. Similar to a service, a Broadcast Receiver does not contain a UI.  

 Intents, an intent is an abstract description of an operation to be performed.  

 

 

Figure 2 Android Component IPC 
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The above components play a crucial role in establish a secure Inter-Process Communication (IPC) to share data, reuse 

components, and provide message passing between applications/processes. The IPC is enabled via two methods, Binder and 

Intents; Intents provide a facility for performing late runtime binding between the code in different applications. Its most significant 

use is in the launching of activities, where it can be thought of as the glue between activities. On the other hand Binder is a 

lightweight Remote Procedure Communication (RPC) mechanism. It is a top level abstraction of Intent. [10] 

Each application installed on the Android OS has the /data folder which contains application settings and data, with the full 

application name as folder-title (e.g. com.mtech.projectapp). Without making changes to the OS, this folder is not accessible for 

other applications besides the app itself and system apps. If malware can accesses an application specific /data folder, they may 

change settings or content for that specific application. This is a form of sandboxing, whereby each app operates within its own 

context.  

The Permission Model[10] [11][12][21] is the most import facet of Android Security, permission are explicitly declared in an 

application manifest during development and they are mainly used to restrict access levels granted to applications. Permissions are 

assigned to apps at installion time, but granted at runtime. This means an application can register a permission, but it might be 

denied it in real time, this is  determined by a concept known as protection levels, which can be either „Normal‟ , „dangerous‟ or 

„signature‟ or „signatureOrSystem. These levels are checked at install time, normal permissions are always granted, dangerous 

permissions are granted after user confirmations of the permissions. Signature level permissions are only granted if the requesting  

app is signed by identical developer  keys that signed the requesting package . signatureOrSystem level are used by apps which 

have been signed by the same key as the system image.  The problem with permissions is that it is an all or nothing approach, a user 

must accept all permissions requested by an application at installation, and choose the ones they want.  

 

 
Figure 3 Permission Labels for com.whatsapp at Install time (right) & in Manifest File (left) 

 

B. Android Malware  

There are various categorizations for Android malware. Jiang and Zhou [14], identified privilege escalation, remote control, 

financial charges, and personal information stealing as the most common malware type. Whilst Halilovic et. al [15], divided 

malware into three different groups: 1) malicious applications that cause a threat to user experience, 2) applications that generate 

extra costs, 3) applications that steal private information. In a much broader context, we can distinguish malware nomenclature as 

Trojans, Spyware, Root permission acquisition, Botnets and new variations of botnets in the form of ransomware. Ransomware is 

mainly used to get financial compensation from the victim.  

 

C. Attack Vectors  

These represent channels or possible ways in which malware can get onto user devices, and [14] found that the most common 

attack vectors are:  

Repackaging - Repackaging is one of the most common techniques malware authors use to piggyback malicious 

payloads into popular applications. Malware authors identify legitimate popular apps, disassemble them, enclose 

malicious payloads, and then re-assemble and submit the new apps to official and/or alternative Android Markets. 

Drive-by Download – malware authors elicit user to download malicious apps via fake adverts, phishing …etc. 

Update Attack - Malware developers may still use repackaging but, instead of enclosing the affected code to the app, 

they   includes an update component that will fetch or download the malicious payloads at runtime. 

 

D. Malware Detection Methods 

There are two predominant methods for malware detection: static and dynamic analysis of software.  

1) Static Analysis – this method specifically looks for suspicious features at the binaries‟ source code. It usually involves 

decompilation, pattern matching and static analysis of the various features from source code. In the Android malware domain static 

analysis has been mainly focused on detecting malware using permissions requested, API calls, and various other features in the 

source code. [16].   
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2) Dynamic analysis - mainly focuses on behavior of a binary file as it executes and monitoring its behavior. [17][18] 

 

We can further more concisely classify the above mentioned methods into the following techniques: 

Signature-based detection – this is the most widely used method of detecting malicious applications. Malicious applications 

are identified used signatures. These signatures will need to be updated periodically.  

Anomaly Based Detection – this monitor activities of applications and looks at deviations from normal usage patterns.  

Behavior Based Detection - focused on analyzing the behavior of a program to decide if it is malicious or not. It may utilize 

Machine Learning (ML) approach for learning patterns and behaviors from known malware, and then to predict the unknown one. 

 

E. Machine Learning in Malware Detection 

Signature based detection suffers the drawback of not being able to detect new or metamorphic malware. It fails mainly 

because of encryption, polymorphism and other obfuscation methods. This has led to the use of ML in malware detection.  

The key feature of Machine Learning (ML) is that it allows to build adaptable systems based on collected data. ML is traditionally 

defined as the “Field of study that gives computers the ability to learn without being explicitly programmed.”[19][22] 

It is possible to achieve sufficient level of detection of malware absent human interaction. For successful detection, there should be 

present two parts: learning algorithm and training labeled dataset with malicious and benign applications [20], after successful 

training we can then test unseen data. A generalized ML approach with both training and testing is shown in the Figure 4. 
 

 
Figure 4: General Machine Learning Process  

Multiple training algorithms are at our disposal when we intend to use ML for malware classification such as;  Artificial Neural 

Networks, Bayesian Networks, Naïve Bayes, Decision Trees, Support Vector Machine(SVM), Boosted Algorithms, K-Nearest 

Neighbor, VFI and OneR. The next two chapters details the approach we used in our research.  

III. DESIGN & METHODOLOGY 

1) Design  
 

Client Side Application 

 

Our design takes a client –server approach to detect malicious apps on the client device. On the client, a lightweight client app 

listens for applications installs and uploads an apk onto a remote centralized server. The user can also upload an apk to perform 

analysis on the submitted file. This is has problems because it results in bandwidth overhead as some apps are large. If an 

application has been installed already, we provide the functionality to retrieve permissions from an installed app and offload them 

to the remote server, to be tested using a ML model trained prior. Due to the fact that Internet connectivity will not always be 

available on mobile we address that concern by providing an on the cloud archiving service which stores records of classified 

application and we generate a unique signature for each scanned file, these signatures are small and they are regularly synchronized 

with the client. Therefore before a client scans or uploads a file it first queries the local database to check if it has been scanned 

already.  
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Figure 5: System Architecture 

Server Side Application 

The web service is a Python web service with a RESTful API and it waits for incoming HTTP requests. When the web 

service receives JSON data stream containing permissions it deserialises the incoming data, and sends it to a method to extract and 

vectorize permissions into a vector to be input into the test model. The classifier will take the input vector and will return a binary 

output either 0, when an application is benign and 1 if an application is malicious, the resulting classification is saved in the 

archive and a signature for the application is generated. A response is then sent back to the device to alert the user of the result. 

The scanned app data will be used to feed and improve the training model overtime.  

Feature Extraction – for feature extraction we use Androguard, a tool used for analysis of apks, reverse engineering of 

Android apps. We created a Python script to automatically extract permissions from uploaded apks.  

Figure 6. Androguard Snippet to get a list of permissions from an apk file 

The list of permissions collected from the apk or received from the client are then used to automatically create a feature 

vector to be input into the test model.  

Feature Vector  
Our feature vector is defined as follows: android has a fixed number of permissions that app developer can assign to their 

apps, therefore we take the set of all possible permissions and we create a binary vector of Boolean values, where a permission is 

requested by a specific app we set it as 1 and where it is absent we set a 0. As shown below; 

 
Malware classification  

For malware training and testing, we initially used the WEKA [23] platform because of its ease of use in rapid prototyping 

and testing ml methods. We later switched to Python Scikit-Learn [24] for developing the system mainly due to our familiarity 

with Python, automatic feature generation is handled using Pandas and Numpy. We tested multiple machine learning algorithms 

to build our model with. The performance of each is evaluated in the next chapter. After training our test model it is possible to 

load our saved model for use in the automated system. 

IV. EVALUATION & RESULTS 

Dataset 

To train our model we used a limited dataset of 500 benign applications downloaded from the Google Play Store, as well as 300 

malware gathered from various sources which include Contagio Dump, Virus share.  

 

App_id [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , malware] 

from androguard.core.bytecodes import apk, dvm 

from androguard.core.analysis import analysis 

import re 

def get_permissions(apk_file): 

  app = apk.APK(apk_file) 

  perms = app.get_permissions() 

  return perms 
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Figure 6: Top 25 requested permissions in the dataset 

 

In Fig 6 we show the most common permissions requested by both malware and benign apps. INTERNT permission is the most 

frequently requested in both classes followed by WAKE_LOCK and WRITE_EXTERNAL_STORAGE.  

 

We tested six ML algorithms namely. Naïve Bayes (NB), NB examines discrete variables, and draws a conclusion by 

calculating their probabilities. RandomForest, it is a decision tree based algorithm that is efficient in malware detection. 

MultiLayerPerceptron is classifier that uses back propagation to classify instances. Simple Logistic Regression, it is used for 

building linear logistic regression models. J48, relies on the feature values to classify instances. A decision tree consists of nodes 

and leave, in this case the nodes are our features and leaves are the class i.e. malware or benign. We used 2 methods to evaluate our 

model. Initially we trained the model and obtained the performance metrics for the trained model then, we also used 5 fold cross 

validation and then testing using unseen test data. Table 1, 2, 4 show the results obtained from the tests. Usually for determining the 

quality of the system the error rate is used as the measurement metric but in the case of a skewed class, where positive examples far 

outnumber negative examples, error rates are not informative. Instead we rely on precision and recall. 

 

Precision measures of the predicted positive, what percentage is actually positive.  

Precision = true positive / (true position + false positive) 

Recall measures how many positive examples were correctly predicted.  

Recall = true positive / (true positive + false negative). 

The F score combines precision and recall into a single number for comparison.  

F Score = 2 * P * R / (P + R) 

 

Table 1: Training Set Results 

Algorithm Precision (TP/TP+FP) Recall(TP+FN) F-Score 

NaiveBayes 0.888 0.907 0.898 

RandomForest 0.99 0.99 0.99 

MultiLayerPerceptron 0.986 1 0.993 

J48 0.913 0.909 0.905 

SimpleLogisticRegression 0.944 0.944 0.944 

 

Table 2: 5 Fold Cross Validation 

Algorithm Precision 

(TP/TP+FP) 

Recall(TP+FN) F-Score 

NaiveBayes 0.881 0.9 0.89 

RandomForest 0.878 0.879 0.878 

MultiLayerPerceptron 0.899 0.886 0.892 

J48 0.863 0.864 0.57 

SimpleLogisticRegression 0.877 0.879 0.877 
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Table 3: Actual Test Set of Play Store Apps 

Algorithm Precision 

(TP/TP+FP) 

Recall(TP+FN) F-Score 

NaiveBayes 0.857 0.9 0.878 

RandomForest 0.893 0.894 0.894 

MultiLayerPerceptron 0.912 0.893 0.903 

J48 0.867 0.867 0.864 

SimpleLogisticRegression 0.893 0.894 0.891 

 

MultiPerceptron has an excellent detection rate of 89% on the unseen data, but it is slower than the others, Second best is 

Random Forest.  

V. DISCUSSION & CONCLUSION 

We present an automated system for classification of Android malware that is capable of continuously retraining to get better 

results. Results show that our system is capable of achieving acceptable detection rates with adequate recall and precision. Whilst 

our method looks promising we wish to include other features into our detection model to ensure a better detection rate, As well as 

reducing noise in our classifier, by reducing the number of features used in the model and increasing the training dataset.  
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