
Fault Tolerance Mechanism for Computational Grid Using Checkpoint Algorithm | ISSN: 2321-9939

2013 | IJEDR1301011 INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

 (All right reserved by www.ijedr.org)

54

Fault Tolerance Mechanism for Computational Grid

Using Checkpoint Algorithm

Mr.Ramesh Prajapati

Dept. of Computer Science Engineering

Jagannath University, Jaipur, India
rtprajapati@gmail.com

 Abstract-- Computational grids have solving large-scale

scientific applications using heterogeneous and geographically

distributed resources Grid infrastructure is a large set of nodes

geographically distributed and connected by a communication.

In Computational grid, fault tolerance is one of the main

research areas. Fault tolerance is a necessary by the distribution

that create a number of problems related to the heterogeneity of

hardware, operating systems, networks, middleware,

applications, the dynamic resource, the scalability. In this

research paper our main focus is on the development of fault

tolerance system for computational grids. we have studied

existing fault tolerance in Computational Grid in detail, and have

ascertained the frequent causes of failures in it. So Checkpoint is

process as a designated place in a program at which normal

processing is interrupted specifically to preserve the status

information necessary to allow resumption of processing at a

later time. Checkpointing is the process of saving the status

information. The probability of fault occurrence increases, as the

number of resources involved in grid increases. For this we had

setup a computational grid based on the Alchemi middleware.

Alchemi is a .NET based grid computing framework that

provides the runtime machinery and programming environment

required to construct computational grid. After setting up grid

environment we had generate the different checkpoint result and

compare with chandy-Lamport result.

Keywords-- Grid computing, fault tolerance, check pointing

I. INTRODUCTION

In Large-scale science and engineering are done through

the interaction of people, heterogeneous computing resources,

information systems, and instruments, all of which are

geographically and organizationally dispersed. The overall

motivation for “Grids” is to facilitate the routine interactions

of these resources in order to support large-scale science and

Engineering. There are many Opportunity of grid in eScience

and eBusiness suppose for Physicists worldwide pool

resources for peta-op analyses of peta bytes of data, for Civil

engineers collaborate to design, execute, & analyze shake

table experiments, for An insurance company mines data from

partner hospitals for fraud detection, for An application

service provider offloads excess load to a compute cycle

provider, and for An enterprise configures internal & external

resources to support eBusiness workload.

There are many Challenges technical requirement for the grid.

[2]

• Dynamic formation and management of virtual

organizations

• Online negotiation of access to services: who, what,

why, when, how

• Establishment of applications and systems able to

deliver multiple qualities of service

• Autonomic management of infrastructure elements

So that in the grid Computing, main element for concept on

Resource sharing, Coordinated problem solving, and

Dynamic, multi-institutional virtual organizations. Grid

resources are also heterogeneous in nature so resources may

enter and leave the grid at any time, in many cases outside of

the applications’ control. So therefore interaction faults may

be likely to occur between disparate grid nodes. Also resource

may be outside of the organization so that is not guaranteed

that a resource being used is not malicious. So here

challenging issue is that faults and failure in grid. So fault

tolerance is a crucial aspect for grid computing.

Section II describes the related work. In section III, we talk

about Types of fault tolerance. Checkpoint recovery of for

grid is described in section IV. The Implementation scheme is

presented in Section V.In section VI described Performance

Evaluation. In section VII, we present the Conclusion. Future

Enhancements describe in section VIII.

II. RELATED WORK

 Fault tolerance[6] is the system to perform its function

correctly even in the presence of faults. The fault tolerance

makes the system more dependable. A complementary but

separate approach to increase dependability is fault

prevention. This consists of techniques, such as inspection,

whose intent is to eliminate the circumstances by which faults

arise. A failure occurs when an actual running system deviates

from this specified behavior. The cause of a failure is called an

error. An error represents an invalid system state that does not

complete the system specification. The error itself is the result

of a defect in the system or fault. In other words, a fault is the

root cause of a failure. However, a fault may not necessarily

2013 | IJEDR1301011 INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH

result in an error; nevertheless, the same fault may result in

multiple errors. Similarly, a single error may lead to multiple

failures.

 Fault tolerance[33] is an important property in grid

computing, since the resources are geographically

Check pointing method is used to

performance in the presence of failure, their effectiveness

largely depends on tuning runtime parameters such a

checkpointing interval there are still many issues that need to

be explored. In current system chandy-lamport algorithm

there are no. of checkpoint are taken during computation, due

to that we required more space and bandwidth to store that

checkpoints. The current algorithm is weak in terms of task

completion time in both of fault-free and faulty situations. By

using checkpoint algorithm, every node saves its context in

stable storage. So that system has context saving overhead.

Basic algorithm does not reduce that overhead

checkpoint algorithm it could not generate the information

about which node has crash and how to recover the failure

node. Then after I had compared my proposed algorithm with

chandy and Lamport algorithm.

III. TYPES OF FAULT TOLERANCE

A. Types of Fault Tolerance

There are many types of fault [4] that we faced in grid

computing related to hardware (like faults of CPU, Disk

storage), application and operating system (Memory link and

resource unavailable), and network (like node failure and

packet losses) see the figure 1. While considering all thes

factors, we have to consider the desirable properties of failure

detectors and correctors that are Completeness, Accuracy,

Consistency, Detection Latency, Scalability, Flexibility,

adaptiveness.

The main objective of fault tolerance [3] is to preserve t

delivery of expected services despite the presence of fault

caused errors within the system itself. Errors are detected and

corrected, and permanent faults are located and removed while

the system continues to deliver acceptable service.

INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH

 (All right reserved by

, the same fault may result in

, a single error may lead to multiple

is an important property in grid

computing, since the resources are geographically distributed.

 improve system

performance in the presence of failure, their effectiveness

largely depends on tuning runtime parameters such as the

there are still many issues that need to

lamport algorithm[3]

there are no. of checkpoint are taken during computation, due

to that we required more space and bandwidth to store that

The current algorithm is weak in terms of task

free and faulty situations. By

node saves its context in

system has context saving overhead.

es not reduce that overhead. here in all

checkpoint algorithm it could not generate the information

about which node has crash and how to recover the failure

had compared my proposed algorithm with

PES OF FAULT TOLERANCE

that we faced in grid

computing related to hardware (like faults of CPU, Disk

storage), application and operating system (Memory link and

resource unavailable), and network (like node failure and

While considering all these

factors, we have to consider the desirable properties of failure

detectors and correctors that are Completeness, Accuracy,

Consistency, Detection Latency, Scalability, Flexibility,

is to preserve the

delivery of expected services despite the presence of fault-

caused errors within the system itself. Errors are detected and

corrected, and permanent faults are located and removed while

to deliver acceptable service.

Figure 1 T

TABLE I DETAILED TYPES OF FAULTS

Sr.No Main Type

1 Hardware Relate Faults

2 Application & Operating

System Oriented Faults

3 Network Related Faults

4 Software Related Faults

5 Timeout Faults

6 Response Relate Faults

B. Problem Definition

From a user's point of view, a distributed application

should continue despite failures

ways to deal with failures, various fault tolerance mechanisms

are there. Some of these fault tolerance mechanisms are

Figure 2)

1. Application Dependent: fault

algorithms and encapsulate them into reusa

artifacts, or modules.

2. Monitoring Systems: In this a fault monitoring unit is

attached with the grid. The base technique which most of

the monitoring units follow is heartbeating technique

3. Checkpointing recovery

saving enough state information of an executing program

on a stable storage so that, if required, the program can be

re-executed starting from the state recorded in the

checkpoints.

4. Fault Tolerant Scheduling

[16]algorithms are using the

policies with the job replication schemes such that jobs

are efficiently and reliably executed. Scheduling policies

are further classified on basis of time sharing and space

sharing.

INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

(All right reserved by www.ijedr.org)

55

Type of Faults

TABLE I DETAILED TYPES OF FAULTS

Detailed Types of faults

CPU

Memory

Storage

Application & Operating Operating System Specific

• Memory Leaks

• OS Faults

Application Specific

Node fault

Network oriented

• Packet corrupted

• Packet Losses

Unhandled Exception

Unexpected Input

Timeout Run Exception

Timeout Job Exception

Value

Byzantine

From a user's point of view, a distributed application

failures. To achieve the automatic

ways to deal with failures, various fault tolerance mechanisms

are there. Some of these fault tolerance mechanisms are (See

: fault-tolerance[15] experts write

algorithms and encapsulate them into reusable code

: In this a fault monitoring unit is

attached with the grid. The base technique which most of

the monitoring units follow is heartbeating technique.

Checkpointing recovery: Checkpointing[1] involves

enough state information of an executing program

on a stable storage so that, if required, the program can be

executed starting from the state recorded in the

Fault Tolerant Scheduling: fault tolerant scheduling

algorithms are using the coupling of scheduling

policies with the job replication schemes such that jobs

are efficiently and reliably executed. Scheduling policies

are further classified on basis of time sharing and space

2013 | IJEDR1301011 INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH

Figure 2 Fault Tolerance Mechanisms

IV. CHECKPOINT RECOVERY

 Check pointing, we can restore the partially completed job

from the last checkpoint saved and then starting a job from

scratch is avoided. The main disadvantage of

mechanism [4] is that it performs identically rega

stability of the resource. The check pointing is one of the most

popular techniques to provide fault-tolerance on unreliable

systems. It is a record of the snapshot of the entire system state

in order to restart the application after the occurre

failure. The checkpoint can be stored on temporary as well as

stable storage. However, the efficiency of the mechanism is

strongly dependent on the length of the check pointing

interval.

V. IMPLEMENTED SCHEME

 Check pointing is one of the techniques of fault

tolerance. Till now many middleware in the grid environment

are not fully faults tolerant. Different middleware have

different levels of fault tolerance. Some of the middleware like

Alchemi.NET do not have a robust fault tolerance

Therefore, in this research work Alchemi.NET has been

chosen and a checkpointing algorithm has been designed for

it. Alchemi.NET [32] is an open source software

framework that allows you to painlessly aggregate the

computing power of networked machines into a virtual

supercomputer and develop applications to run on the grid.

Alchemi.NET includes:

• The runtime machinery (Windows executabl

construct grids.

INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH

 (All right reserved by

Mechanisms

CHECKPOINT RECOVERY

heck pointing, we can restore the partially completed job

from the last checkpoint saved and then starting a job from

scratch is avoided. The main disadvantage of checkpointing

is that it performs identically regardless the

The check pointing is one of the most

tolerance on unreliable

the snapshot of the entire system state

application after the occurrence of some

can be stored on temporary as well as

efficiency of the mechanism is

strongly dependent on the length of the check pointing

IMPLEMENTED SCHEME

f the techniques of fault

tolerance. Till now many middleware in the grid environment

are not fully faults tolerant. Different middleware have

different levels of fault tolerance. Some of the middleware like

Alchemi.NET do not have a robust fault tolerance mechanism.

Therefore, in this research work Alchemi.NET has been

chosen and a checkpointing algorithm has been designed for

is an open source software

framework that allows you to painlessly aggregate the

computing power of networked machines into a virtual

supercomputer and develop applications to run on the grid.

The runtime machinery (Windows executables) to

• A .NET API and tools to develop .NET grid

applications and grid enabled legacy applications.

A. Checkpoint Algorithm with certain time period

Algorithm: Checkpoint Algorithm with certain time period

Input: Enter maximum limit for

(1000000)

 Host

 Port Number

 Host Name

 Password

 Time interval to create consecutive checkpoint

Output: Generate Checkpoint, Executor Log

Algorithm Step:

S1: Initialization Set Checkpoint time

Processes.

S2: Send message to manager for alive connection.

 Check Failure condition If failure

 4. Otherwise continue to step 3

S3: while process Pi till the end.

Initialize new checkpoint flag value as

If Process Current time= Checkpoint

taking checkpoint Take stable checkpoint with current process

state increase checkpoint number

time set flag false after successful

checkpoint with current process state.

number Update checkpoint interval time

successful checkpoint.

S4: After checkpoint flag is checked, process Pi send and

receive message and Check

greater than Current checkpoint

checkpoint no = Current checkpoint no then flag=0

Current checkpoint no = Manager checkpoint no

new checkpoint with current process state

checkpoint no = Manager checkpoint no

VI: PERFORMANCE

A. Results Taken From

This study was done on the bases on 15 executors

running with one manager to

generation application. Each node comprises of one CPU core

with 512MB ram and storage spaces of 40 GB.I have

three parameters.

INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

(All right reserved by www.ijedr.org)

56

A .NET API and tools to develop .NET grid

applications and grid enabled legacy applications.

Checkpoint Algorithm with certain time period

: Checkpoint Algorithm with certain time period

Input: Enter maximum limit for prime number

Time interval to create consecutive checkpoint

Checkpoint, Executor Log file

Set Checkpoint time Interval initialize no of

message to manager for alive connection.

If failure occur then go to step

continue to step 3

process Pi till the end. Initialize checkpoint no

new checkpoint flag value as true. Initialize CT

If Process Current time= Checkpoint Intervals set flag 1 for

Take stable checkpoint with current process

int number Update checkpoint interval

successful checkpoint Else Take stable

checkpoint with current process state. Increase checkpoint

Update checkpoint interval time set flag false after

checkpoint flag is checked, process Pi send and

 manager checkpoint number

greater than Current checkpoint number. If Manager

urrent checkpoint no then flag=0 Set

Manager checkpoint no Else Take

new checkpoint with current process state Set Current

Manager checkpoint no Set flag = 1

: PERFORMANCE EVALUATION

Results Taken From Alchemi Tool

This study was done on the bases on 15 executors

running with one manager to execute prime number

generation application. Each node comprises of one CPU core

spaces of 40 GB.I have worked

2013 | IJEDR1301011 INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

 (All right reserved by www.ijedr.org)

57

Total Execution Time: The experiment was done on the

bases two policies. First policies comparison of Different

Number of Executer with Different input range with respect to

time.

TABLE 2 COMPARISON OF DIFFERENT NUMBER OF

EXECUTER WITH DIFFERENT INPUT RANGE WITH

RESPECT TO TIME

Table 1 shows result summary of prime number generation

with different executers, different input range given by user

and fix time interval of 300 ms. so we can compare result with

Chandy-Lamport algorithm with different input range given

and total time to complete the application. And second

policies comparison of comparison of Different Number of

Executer with Different input range with respect to Generation

of checkpoint.

TABLE 3 COMPARISON OF DIFFERENT NUMBER OF

EXECUTER WITH DIFFERENT INPUT RANGE WITH

RESPECT TO GENERATION OF CHECKPOINT

Table 2 shows result summary of prime number generation

with different executers, different input range given by user

and fix time interval of 300 ms . so we can compare result of

number of checkpoint generated with Chandy-Lamport

algorithm and Implemented algorithm.

Figure 3 Comparison of checkpoint generation (Input Range:

10000)

Figure 3 shows result summary of prime number generation

with different executers, different input range given by user

and fix time interval of 300 ms .so we can compare result with

Chandy-Lamport algorithm with different input range given

and total time to complete the application Implemented

algorithm total time taken by application is small compare to

Chandy-Lamport algorithms in different input ranges.

Figure 4 Comparison of checkpoint generation (Input

Range: 50000)

2013 | IJEDR1301011 INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

 (All right reserved by www.ijedr.org)

58

Figure 5 Comparison of checkpoint generation (Input Range:

100000)

Figure 6 Execution Time (CPG-CTPAlgorithm with Prime of

10000)

Figure 7 Execution Time (Chandy-Lamport Algorithm with

Prime of 10000)

Figure 8 Execution Time (CPG-CTPAlgorithm with Prime of

50000)

Figure 9 Execution Time (Chandy-Lamport Algorithm with

Prime of 50000)

Figure 10 Execution Time (CPG-CTPAlgorithm with Prime

of 100000)

2013 | IJEDR1301011 INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

 (All right reserved by www.ijedr.org)

59

Figure 11 Execution Time (Chandy-Lamport Algorithm with

Prime of 100000)

In this entire figure we had compared in our algorithm with

number of executor increases it takes less execution time to

complete application and in chandy-Lamport algorithm it

takes more execution time to complete application.

VII. CONCLUSION

In this paper the sharing of computational resources is a main

motivation for constructing Computational Grids in which

multiple computers are connected by a communication

network.Alchemi.NET for handling the faults dynamically has

been identified. On the basis of identified shortcomings,

proposed and updated fault tolerance in Alchemi.NET

middleware with the help of check pointing

algorithm..Implemented checkpoint concept that will help in

avoiding the grid to become inaccessible if the Manager or

Executor fails. This implementation done in Alchemi.Net Grid

with fix time interval to take checkpoint of the running

system. Number of checkpoint created is proportional to time

taken by system to execute the job. In case executer fails and

restarts it starts the job from the last checkpoint which

increases the performance in both given approaches. Handles

large amount of data with multiple executers which increases

the overall performance i.e. taken less time by the system in

this approach.

VIII .FUTURE ENHANCEMENTS

Checkpoint can be extended to work with load balancing

technique. Backup manager concept that will help in avoiding

the grid to become inaccessible if the central manager fails.

This implementation is kind of third party software that will

improve the grid fault tolerance. But this can be integrated

into the Alchemi.NET middleware code to help the user to

easily use it.

RERERENCES

[1] Sriram Krishnan, “An Architecture for Checkpointing and

Migration of Distributed Components on the Grid” PhD Thesis,

Department of Computer Science, Indiana University, November

2004

[2] Dheeraj Bhardwaj. Grid Computing

Concepts, Applications, and Technologies Department of

Computer Science and Engineering Indian Institute of

Technology, Delhi

[3] Paul Townend and Jei Xu, “Fault Tolerance within a Grid

Environment” Proceedings of AHM2003

[4] Foster, I., Kesselman, C., “The Grid: Blueprint for a New

Computing Infrastructure, Morgan Kaufmann”, pp. 15-51, 1999.

[5] Prakash R. and Singhal M.Low-Cost Checkpointing and

Failure Recovery in Mobile Computing Systems. ,IEEE

Transaction On Parallel and Distributed Systems, vol. 7,no. 10,

pp. 1035- 1048, October1996.

[6] Chandy K. M. and Lamport L., "Distributed Snapshots:

Determining Global State of Distributed Systems," ACM

Transaction on Computing Systems, vol. 3, No. 1, pp. 63-75,

February 1985.

[7] Koo. R. and S.Toueg. .Checkpointing and Rollback-Recovery for

Distributed Systems. .IEEE Transactions on Software

Engineering, SE- 13(1):23-31, January 1987.

[8] Silva L, Silva J 1992 Global checkpointing for distributed

programs. Proc. IEEE 11th Symp. On Reliable Distributed Syst.

pp 155-162.

[9] J.L. Kim and T. Park. "An efficient protocol for checkpointing

recovery in Distributed Systems" IEEE Transaction On Parallel

and Distributed Systems, 4(8):pp.955-960, Aug 1993.

[10] G. Cao and M. Singhal. "On impossibility of Min- Process and

Non-Blocking Checkpointing and An Efficient Checkpointing

algorithm for mobile computing Systems". OSU Technical

Report #0SU-CISRC-9/97-TR44, 1997, pp 37-44.

[11] D.V. Subba Rao and MM Naidu: A new, efficient corrdinated

checkpointing protocol combined with selective sender based

message logging, IEEE, 2008, Page(s): 444 – 447.

[12] "An Adaptive Index-based Algorithm using Time-coordination in

Mobile Computing", by Yanping Gao, Changhui Deng, Yandong

Che in the Proceedings of the 2008 International Symposium on

Information Processing (ISIP 08), May 2008, pp.578-585.

[13] Ajay D Kshemkalyani: “A symmetric O(n log n) message

distributed snapshot algorithm for large scale systems”, IEEE,

2010, pp 1-4

[14] Ajay D Kshemkalyani “ Fast and message efficient global

snapshot algorithms for large scale distributed systems” IEEE

2010. Page(s): 1281 – 1289.

[15] Anh Nguyen-Tuong, “Integrating Fault-Tolerance Techniques in

Grid Applications” PhD Thesis, University of Virginia, August

2000

[16] J.H. Abawajy, “Fault-Tolerant Scheduling Policy for Grid

Computing Systems”, IPDPS’04

[17] www.gridsim.org

[18] gridsimulator.http://www.buyya.com/gridbus/gridsim/,relea sed

on Apr 08, 2009

[19] http://www.gridcomputingplanet.com

[20] www.Alchemi.NET.net

[21] Krishna Nadiminti, Akshay Luther, Rajkumar Buyya, “Alchemi:

A .NETbased Enterprise Grid System and Framework” December

2005

2013 | IJEDR1301011 INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

 (All right reserved by www.ijedr.org)

60

[22] www.wiki.gridpp.ac.uk/wiki/Grid middleware

[23] Amit Jain and R.K. Shyamasundar, “Failure Detection and

Membership Management in Grid Environments” Fifth

IEEE/ACM International Workshop on Grid Computing

(GRID'04) pp. 44-52
[24] Neeraj Kumar Rathore Ms. Inderveer Chana, "Comparative

Analysis of Checkpointing" IMR Third National IT Conference-

2008 on "Prestige Institute of Management and Research", Indore

(M.P), India.

[25] Liang PENG, Lip Kian NG, “N1GE6 Checkpointing and

Berkeley Lab Checkpoint/Restart” Dec 28, 2004

[26] Paul Townend and Jie Xu-"Fault Tolerance within a Grid

Environment",University of Durham, DH1 3LE, United

Kingdom.
[27] C.Kesselman. I. Foster. Computational grids. In The Grid:

Blueprint for a New Computing Infrastructure., chapter 2.

Morgan-kaufman edition, 1999.

[28] Yuuki Horita, Kenjiro Taura, Takashi Chikayama, “A Scalable

and Efficient Self-Organizing Failure Detector for Grid

Applications” 6th IEEE/ACM International Workshop on Grid

Computing, Grid 2005

[29] en.wikipedia.org/wiki/Grid_computing

[30] Leu P-J, Bhargava B "Concurrent robust checkpointing and

recovery in distributed systems". Proc. Int. Conf. on Data

Engineering pp 154-163,1988

[31] Yanping Gao, Changhui Deng, Yandong Che: an adaptive index

based algorithm using time coordination in mobile computing,

International symposiums on information processing, IEEE,

2008, pp 578-585.

[32] Rajkumar Buyya and Srikumar venugopal , "A Gentle

Introduction to Grid Computing and Technologies", CSI

Communications, pages 9-19, Vol.29, No.1, ISSN 0970-647X,

Computer Society of India (CSI), Mumbai, India, July 2005.

[33] J. Joseph, C. Fellenstein, "Grid Computing", Prentice Hall/IBM

Press, Edition 2004

[34] Akshay Luther Rajlumar Buyya Rajiv Ranjan,”Peer-to-Peer Grid

Computing and a .Net-based Alchemi Framework”, the

University of Melbourne, Australia

