
IJEDRCP1403015 International Jou

 

Combinatorial Interaction Testing Using Test Case 

Based Constraints

1
Software Engineering, SRM University

1pavank278@gmail.com

________________________________________________________________________________________________________

Abstract— The bigger applications like web servers e.g. Apache, databases e.g. mysql, and application servers e.g. Tomcat are required 

to be customizable to adapt to particular runtime contexts and application scenarios. One way to support software customizati

provide configuration options through which the 

software systems are too large to test exhaustively. The proposed

samples the covering arrays and the test cases to make the highly configured application or system. In the combinatorial inte

testing generally we generate configuration options and then we apply test cases for each configuration options. Th

effect or skipping of the some reliable configur

traditional combinatorial Interaction Testing. Traditional Combinatorial Interaction Testing generates 

options and uses test case specific constraints and seeding which avoids the masking effect.   

Index Terms—Combinatorial interaction testing,

I. INTRODUCTION  

Test case-aware covering arrays aim to ensure that each test case has a fair chance to test all of its valid t

test case is scheduled to be executed only in configurations which are valid for the test case so that no

In other words, for a given configuration space model, a t

which is associated with a set of test cases, indicating the test cases scheduled to be executed i

of the selected configurations violate the system

that violates the test case-specific constraint of the test case, and 3) for each test ca

the set of configurations in which the test case is scheduled to be executed. An example presents a 3

array created for our hypothetical. Since none of the test case

has a chance to test all of its valid 3-tuples; no masking effects caused by test skips can occur.

 

Test Case-Specific Constraints  

We first observed that the test case-specific constraints 

they were known to the developers. This is important because the more accurate and complete the test case

 

Test Case Generation 
Research on automated test case generation has resulted in a great number of different approaches, deriving test cases from 

models or source code, using different test objectives such as coverage criteria, and using many different underlying techniq

and algorithms. It has used white-box techniques that require no specifications; naturally, an existing specification can help in 

both generating test cases and can serve as test oracle.

 

Oracle Generation 
In the context of regression testing, automated synthesis of assertions is a natu

allows annotation of the source code to identify observer methods to be used for assertion generation. Orstra generates asser

based on observed return values and object states and adds assertions to check

approach has also been adopted in commercia

 

While such approaches can be used to derive efficient oracles, they do not serve to identify which of these assertions are ac

useful, and such techniques are therefore only found in regression testing. Eclat can generate assertions based on a model learned

from assumed correct executions; in contrast, μ

II. RELATED WORK 

Whole Test Suite Generation  

Whole test suite generation proposes the tool to automatically generate test oracles. A common scenario in software testing is 

therefore that test data is generated, and a tester manually add

test case and corresponding test oracles generated efficiently. And task of manually analyzing the code for testing is reduce

keeps the coverage goal and coverage criteria for the code that for the test case is generated.

oracles. Coverage goals are not independent.

coverage goalsIn this project a method is proposed based on the Genetic Algorithm.

© 2014 IJEDR | Conference Proceeding (NCETSE

l Journal of Engineering Development and Research (

Combinatorial Interaction Testing Using Test Case 

Based Constraints 

1
K.Pavan Kumar, 

2
T.S.Shiny Angel 

1
Mtech Student, 

2
Assistant Professor 

Software Engineering, SRM University , Chennai, India 
pavank278@gmail.com, 2angel_d_leno@yahoo.co.in

________________________________________________________________________________________________________

The bigger applications like web servers e.g. Apache, databases e.g. mysql, and application servers e.g. Tomcat are required 

to be customizable to adapt to particular runtime contexts and application scenarios. One way to support software customizati

provide configuration options through which the behavior of the system can be controlled. But the configuration spaces of modern 

austively. The proposed method called traditional combinatorial interaction testin

samples the covering arrays and the test cases to make the highly configured application or system. In the combinatorial inte

testing generally we generate configuration options and then we apply test cases for each configuration options. Th

effect or skipping of the some reliable configuration options. The obtained system is towards to highly configurable system which uses 

traditional combinatorial Interaction Testing. Traditional Combinatorial Interaction Testing generates 

options and uses test case specific constraints and seeding which avoids the masking effect.    

Combinatorial interaction testing, configurations options, configuration space, covering array

aware covering arrays aim to ensure that each test case has a fair chance to test all of its valid t

test case is scheduled to be executed only in configurations which are valid for the test case so that no

In other words, for a given configuration space model, a t-way test case-aware covering array is a set of configurations, each of 

which is associated with a set of test cases, indicating the test cases scheduled to be executed in the configuration such that 1)none 

of the selected configurations violate the system-wide constraint, 2) no test case is scheduled to be executed in a configuration 

specific constraint of the test case, and 3) for each test case, every valid t

the set of configurations in which the test case is scheduled to be executed. An example presents a 3

array created for our hypothetical. Since none of the test case-specific constraints are violated in this

tuples; no masking effects caused by test skips can occur.[4] 

specific constraints were encoded in the test oracles of our subject applications, indicating that 

they were known to the developers. This is important because the more accurate and complete the test case

ase generation has resulted in a great number of different approaches, deriving test cases from 

models or source code, using different test objectives such as coverage criteria, and using many different underlying techniq

box techniques that require no specifications; naturally, an existing specification can help in 

both generating test cases and can serve as test oracle. 

In the context of regression testing, automated synthesis of assertions is a natural extension of test case generation. Randoop 

allows annotation of the source code to identify observer methods to be used for assertion generation. Orstra generates asser

based on observed return values and object states and adds assertions to check future runs against these observations. A similar 

approach has also been adopted in commercial tools such as Agitar. 

While such approaches can be used to derive efficient oracles, they do not serve to identify which of these assertions are ac

l, and such techniques are therefore only found in regression testing. Eclat can generate assertions based on a model learned

from assumed correct executions; in contrast, μtest does not require any existing executions to start with.

proposes the tool to automatically generate test oracles. A common scenario in software testing is 

therefore that test data is generated, and a tester manually adds test oracles. But this Whole Test Suite 

test case and corresponding test oracles generated efficiently. And task of manually analyzing the code for testing is reduce

keeps the coverage goal and coverage criteria for the code that for the test case is generated. 

Coverage goals are not independent. Coverage goals are infeasible.Test generation is therefore dependent on the order of 

In this project a method is proposed based on the Genetic Algorithm. This project a

© 2014 IJEDR | Conference Proceeding (NCETSE-2014) | ISSN: 2321-9939 

rch (www.ijedr.org) 75 

Combinatorial Interaction Testing Using Test Case 

angel_d_leno@yahoo.co.in 

________________________________________________________________________________________________________ 

The bigger applications like web servers e.g. Apache, databases e.g. mysql, and application servers e.g. Tomcat are required 

to be customizable to adapt to particular runtime contexts and application scenarios. One way to support software customization is to 

of the system can be controlled. But the configuration spaces of modern 

method called traditional combinatorial interaction testing which 

samples the covering arrays and the test cases to make the highly configured application or system. In the combinatorial interaction 

testing generally we generate configuration options and then we apply test cases for each configuration options. That causes masking 

system is towards to highly configurable system which uses 

traditional combinatorial Interaction Testing. Traditional Combinatorial Interaction Testing generates test cases with configuration 

covering array, masking effect. 

aware covering arrays aim to ensure that each test case has a fair chance to test all of its valid t-tuples. To this end, each 

test case is scheduled to be executed only in configurations which are valid for the test case so that no masking effects can occur. 

aware covering array is a set of configurations, each of 

n the configuration such that 1)none 

wide constraint, 2) no test case is scheduled to be executed in a configuration 

se, every valid t-tuple appears at least once in 

the set of configurations in which the test case is scheduled to be executed. An example presents a 3-way test case aware covering 

straints are violated in this covering array, each test case 

were encoded in the test oracles of our subject applications, indicating that 

they were known to the developers. This is important because the more accurate and complete the test case-specific constraints. 

ase generation has resulted in a great number of different approaches, deriving test cases from 

models or source code, using different test objectives such as coverage criteria, and using many different underlying techniques 

box techniques that require no specifications; naturally, an existing specification can help in 

ral extension of test case generation. Randoop 

allows annotation of the source code to identify observer methods to be used for assertion generation. Orstra generates assertions 

future runs against these observations. A similar 

While such approaches can be used to derive efficient oracles, they do not serve to identify which of these assertions are actually 

l, and such techniques are therefore only found in regression testing. Eclat can generate assertions based on a model learned 

test does not require any existing executions to start with. 

proposes the tool to automatically generate test oracles. A common scenario in software testing is 

Whole Test Suite Generation tells about the 

test case and corresponding test oracles generated efficiently. And task of manually analyzing the code for testing is reduced. It 

 Tester manually generates test 

est generation is therefore dependent on the order of 

This project aims covering all coverage goals 



IJEDRCP1403015 International Jou

 

at the same time. Its effectiveness is not affected by the number of infeasible targets in the code.

efficient.[1] 

 

Genetic Algorithm 

In the computer science field of artificial intelligence

of natural selection. This heuristic (also sometimes called a

to optimization and search problems. Genetic algorithms belong

generate solutions to optimization problems using techniques inspired by natural evolution, such 

as inheritance, mutation, selection, and crossover

 

Mutation-driven Generation of Unit Tests and 

To assess the quality of test suites, mutation analysis seeds artificial defects (mutations) into programs; a non

indicates a weakness in the test suite. We present an automated approach to generate unit tests that detect these mu

object-oriented classes. This has two advantages: First, the resulting test suite is optimized towards finding defects rather than 

covering code. Second, the state change caused by mutations induces oracles that precisely detect the mutants. Ev

open source libraries, our μtest prototype generates test suites that find significantly more seeded defects than the origina

manually written test suites.[2] 

The unit tests against which we compared might not be representative for all type

against automatically derived tests), but we chose projects known to be well tested. The units investigated had to be testabl

automatically. Another possible threat is that the tools the project have used or im

generated oracles might be over fitted to the mutants for which they are constructed, but studies have shown that mutation 

analysis is well suited to evaluate testing techniques.

covering code. Second, the state change caused by mutations induces oracles that precisely detect the mutants.

 

μtest 

μtest creates a test case with an oracle that catches this very mutation. LocalDate object var0

our case). Line 2 generates a DateTime object with the same day, month, and year as var0 and the local time (fixed to 0, agai

The constructor call for var2 implicitly calls the constructor, and therefore var0 and 

differ by 1 millisecond on the mutant, which the assertion detects. By generating oracles in addition to tests, 

act of testing to checking whether the generated assertions are valid, rather

related to these assertions. If a suggested assertion is not valid, then usually a bug has been found. Summarizing, the contr

of this paper are: 

 

• Mutant-based unit test case generation:

μtest uses a genetic algorithm to breed method/constructor call sequences that are effective in detecting mutants. Mutant

based oracle generation: By comparing executions of a test case on a program and its mutants, we generate a reduced set 

of assertions that is able to distinguish between a program and its mutants.

• Impact-driven test case generation: 

To minimize assessment effort, μtest optimizes test cases and oracles towards detecting mutations with maximal 

impact—that is, changes to program state all across

assess for the tester, and more important for a test suite.

• Mutant-based test case minimization: 

Intuitively, the shorter a test case, the easier it is to understand. We minimize test ca

approach that penalizes long sequences during test case generation, and then we remove all irrelevant statements in the 

final test case. 

 

© 2014 IJEDR | Conference Proceeding (NCETSE

l Journal of Engineering Development and Research (

Its effectiveness is not affected by the number of infeasible targets in the code.Coverage goal are effective and 

artificial intelligence, a genetic algorithm (GA) is a search heuristic

. This heuristic (also sometimes called a met heuristic) is routinely used to generate useful solutions 

Genetic algorithms belong to the larger class of evolutionary algorithms

generate solutions to optimization problems using techniques inspired by natural evolution, such 

crossover. 

driven Generation of Unit Tests and Oracles 

To assess the quality of test suites, mutation analysis seeds artificial defects (mutations) into programs; a non

indicates a weakness in the test suite. We present an automated approach to generate unit tests that detect these mu

oriented classes. This has two advantages: First, the resulting test suite is optimized towards finding defects rather than 

covering code. Second, the state change caused by mutations induces oracles that precisely detect the mutants. Ev

test prototype generates test suites that find significantly more seeded defects than the origina

The unit tests against which we compared might not be representative for all types of tests (in particular we did not compare 

against automatically derived tests), but we chose projects known to be well tested. The units investigated had to be testabl

automatically. Another possible threat is that the tools the project have used or implemented could be defective. Potentially, the 

generated oracles might be over fitted to the mutants for which they are constructed, but studies have shown that mutation 

to evaluate testing techniques.The resulting test suite is optimized towards finding defects rather than 

covering code. Second, the state change caused by mutations induces oracles that precisely detect the mutants.

test creates a test case with an oracle that catches this very mutation. LocalDate object var0 is initialized to a fixed value (0, in 

our case). Line 2 generates a DateTime object with the same day, month, and year as var0 and the local time (fixed to 0, agai

The constructor call for var2 implicitly calls the constructor, and therefore var0 and var2 have identical day, month, and year, but 

differ by 1 millisecond on the mutant, which the assertion detects. By generating oracles in addition to tests, 

act of testing to checking whether the generated assertions are valid, rather than coming up with assertions and sequences that are 

related to these assertions. If a suggested assertion is not valid, then usually a bug has been found. Summarizing, the contr

based unit test case generation: 

uses a genetic algorithm to breed method/constructor call sequences that are effective in detecting mutants. Mutant

based oracle generation: By comparing executions of a test case on a program and its mutants, we generate a reduced set 

s able to distinguish between a program and its mutants. 

driven test case generation:  

To minimize assessment effort, μtest optimizes test cases and oracles towards detecting mutations with maximal 

that is, changes to program state all across the execution. Intuitively, greater impact is easier to observe and 

assess for the tester, and more important for a test suite. 

based test case minimization:  

Intuitively, the shorter a test case, the easier it is to understand. We minimize test cases by first applying a multi

approach that penalizes long sequences during test case generation, and then we remove all irrelevant statements in the 

Fig 1 

© 2014 IJEDR | Conference Proceeding (NCETSE-2014) | ISSN: 2321-9939 

rch (www.ijedr.org) 76 

Coverage goal are effective and 

heuristic that mimics the process 

) is routinely used to generate useful solutions 

evolutionary algorithms (EA), which 

generate solutions to optimization problems using techniques inspired by natural evolution, such 

To assess the quality of test suites, mutation analysis seeds artificial defects (mutations) into programs; a non-detected mutation 

indicates a weakness in the test suite. We present an automated approach to generate unit tests that detect these mutations for 

oriented classes. This has two advantages: First, the resulting test suite is optimized towards finding defects rather than 

covering code. Second, the state change caused by mutations induces oracles that precisely detect the mutants. Evaluated on two 

test prototype generates test suites that find significantly more seeded defects than the original 

s of tests (in particular we did not compare 

against automatically derived tests), but we chose projects known to be well tested. The units investigated had to be testable 

plemented could be defective. Potentially, the 

generated oracles might be over fitted to the mutants for which they are constructed, but studies have shown that mutation 

imized towards finding defects rather than 

covering code. Second, the state change caused by mutations induces oracles that precisely detect the mutants. 

is initialized to a fixed value (0, in 

our case). Line 2 generates a DateTime object with the same day, month, and year as var0 and the local time (fixed to 0, again). 

var2 have identical day, month, and year, but 

differ by 1 millisecond on the mutant, which the assertion detects. By generating oracles in addition to tests, μtest simplifies the 

than coming up with assertions and sequences that are 

related to these assertions. If a suggested assertion is not valid, then usually a bug has been found. Summarizing, the contributions 

uses a genetic algorithm to breed method/constructor call sequences that are effective in detecting mutants. Mutant-

based oracle generation: By comparing executions of a test case on a program and its mutants, we generate a reduced set 

test optimizes test cases and oracles towards detecting mutations with maximal 

the execution. Intuitively, greater impact is easier to observe and 

ses by first applying a multi-objective 

approach that penalizes long sequences during test case generation, and then we remove all irrelevant statements in the 

 



IJEDRCP1403015 International Jou

 

The above diagram shows overall μtest process: The first step is 

into test tasks, consisting of a unit under test with its methods and constructors as well as all classes and class members r

for test case generation. For each unit a genetic algorithm

that unit, where possible, is covered by a test case such that its impact is maximized. They minimize unit tests by removing 

statements that are not relevant for the mutation or aff

the behaviour of the test case on the original software and its mutants.

 

The authors have implemented μtest as an extension to the Javalanche mutation system. Authors demonstrate

applying it to two open source libraries that have a reputation of

effective in evaluating existing test suites. Although our 

to improve the results further: For example, previously generated test cases, manual unit tests, or test cases satisfying a c

criterion could serve as a better starting point for the genetic algorithm.

 

III. EVOLUTIONARY GENERATION OF WHOLE T

Recent advances in software testing allow automatic derivation of tests that reach almost any desired point in the source cod

There is, however, a fundamental problem with the general idea of targeting one distinct test coverag

goals are neither independent of each other, nor is test generation for any particular coverage goal guaranteed to succeed. W

present EVOSUITE, a search-based approach that optimizes whole test suites towards satisfying a covera

generating distinct test cases directed towards distinct coverage goals. The focus of this paper is on comparing the approach

“entire test suite” to “one target at the time”.

defined. We gave priority to the achieved coverage, with the secondary goal of minimizing the length.The proposed method 

shows the generation of the test case automatically via. test tool generation.

 

Genetic Algorithm 

In the computer science field of artificial intelligence

of natural selection. This heuristic (also sometimes called a

to optimization and search problems. Genetic algorithms belong to the larger class of

generate solutions to optimization problems

as inheritance, mutation, selection.  

 

Proposed Method  

This project proposes on the configuration options and test cases for highly configured system.

configuration space and test cases based on the test case on specific constraints.

Testing is used for the test cases and the configuration options.

configurable. 

 

Problems addressed 

General-purpose, one-size-fits-all software solutions are not acceptable in many application domains. For example, web servers 

(e.g., Apache), databases (e.g., MySQL), and application servers (e.g., Tomcat) are required to be

particular runtime contexts and application scenarios. One way to support software customization is to provide configuration 

options through which the behavior of the system can be controlled. While having a configurable system pr

it creates many system configurations, each of which may need extensive QA to validate. Since the number of configurations 

grows exponentially with the number of configuration options, exhaustive testing of all configurations, if feas

scale well. 

 

Algorithm 1: Maintaining a Separate Configuration Space Model for Each Test Case: 

In this first algorithm a different test case is maintained for the every configuration options.

test configuration options with test cases. The test case specific constraints are mad

E.g.  
Assume configuration options are: o1,o2,o3,o4 and the relevant test cases are as t1,t2,t3;Thus every set of configuration opt

o1, o2, o3, o4 have some specific constraint for the test cases to run.

Similarly t2 can run configuration options where o2 is 1.And t3 does not have any constraints. And applies seeding mechanism 

overcome the masking effect. 

Algorithm 2: Maintaining a Single Configuration Space Model

This algorithm operates in an iterative manner. At each iteration, we select the best configuration

cases which cover the greatest number of previo

covering array and the t-pairs appearing in the selection are marked as covered. The iterations end when every valid t

covered at least once. Thus above two algorithms ar

covering arrays. 

Algorithm 3: Minimizing Number of Test Runs

However, reducing the number of configurations does not necessarily reduce the

trade off is test cases to share configurations.

© 2014 IJEDR | Conference Proceeding (NCETSE

l Journal of Engineering Development and Research (

test process: The first step is mutation analysis and a partitioning of the software under test 

into test tasks, consisting of a unit under test with its methods and constructors as well as all classes and class members r

for test case generation. For each unit a genetic algorithm breeds sequences of method and constructor calls until each mutant of 

that unit, where possible, is covered by a test case such that its impact is maximized. They minimize unit tests by removing 

statements that are not relevant for the mutation or affected by it; finally, and they generate and minimize assertions by comparing 

the behaviour of the test case on the original software and its mutants. 

test as an extension to the Javalanche mutation system. Authors demonstrate

applying it to two open source libraries that have a reputation of being extensively well-tested.Mutation analysis is known to be 

Although our μtest experiences are already very promising,

to improve the results further: For example, previously generated test cases, manual unit tests, or test cases satisfying a c

criterion could serve as a better starting point for the genetic algorithm. 

TEST SUITES 

Recent advances in software testing allow automatic derivation of tests that reach almost any desired point in the source cod

There is, however, a fundamental problem with the general idea of targeting one distinct test coverag

goals are neither independent of each other, nor is test generation for any particular coverage goal guaranteed to succeed. W

based approach that optimizes whole test suites towards satisfying a covera

generating distinct test cases directed towards distinct coverage goals. The focus of this paper is on comparing the approach

“entire test suite” to “one target at the time”. Threats to construct validity are on how the performanc

defined. We gave priority to the achieved coverage, with the secondary goal of minimizing the length.The proposed method 

shows the generation of the test case automatically via. test tool generation.[3] 

artificial intelligence, a genetic algorithm (GA) is a search heuristic

. This heuristic (also sometimes called a met heuristic) is routinely used to generate useful solutions 

Genetic algorithms belong to the larger class of evolutionary algorithms

generate solutions to optimization problems using techniques inspired by natural evolution, such 

proposes on the configuration options and test cases for highly configured system.

configuration space and test cases based on the test case on specific constraints. The Traditional Combinatorial Interaction 

Testing is used for the test cases and the configuration options. It overcomes the masking effects.

all software solutions are not acceptable in many application domains. For example, web servers 

(e.g., Apache), databases (e.g., MySQL), and application servers (e.g., Tomcat) are required to be

particular runtime contexts and application scenarios. One way to support software customization is to provide configuration 

options through which the behavior of the system can be controlled. While having a configurable system pr

it creates many system configurations, each of which may need extensive QA to validate. Since the number of configurations 

grows exponentially with the number of configuration options, exhaustive testing of all configurations, if feas

Algorithm 1: Maintaining a Separate Configuration Space Model for Each Test Case:  

In this first algorithm a different test case is maintained for the every configuration options. A generator is used which generates 

he test case specific constraints are made for every test case

Assume configuration options are: o1,o2,o3,o4 and the relevant test cases are as t1,t2,t3;Thus every set of configuration opt

have some specific constraint for the test cases to run. For t1 only can run in configuration options where o1 is 0.

Similarly t2 can run configuration options where o2 is 1.And t3 does not have any constraints. And applies seeding mechanism 

Algorithm 2: Maintaining a Single Configuration Space Model 
This algorithm operates in an iterative manner. At each iteration, we select the best configuration

cases which cover the greatest number of previously uncovered t-pairs. The selection is then included in the test case

pairs appearing in the selection are marked as covered. The iterations end when every valid t

Thus above two algorithms are used to minimize the number of configurations included in test case

Algorithm 3: Minimizing Number of Test Runs 

However, reducing the number of configurations does not necessarily reduce the number of test run required. 

off is test cases to share configurations. It can be avoided by using brute force attack. 

© 2014 IJEDR | Conference Proceeding (NCETSE-2014) | ISSN: 2321-9939 

rch (www.ijedr.org) 77 

mutation analysis and a partitioning of the software under test 

into test tasks, consisting of a unit under test with its methods and constructors as well as all classes and class members relevant 

breeds sequences of method and constructor calls until each mutant of 

that unit, where possible, is covered by a test case such that its impact is maximized. They minimize unit tests by removing all 

ected by it; finally, and they generate and minimize assertions by comparing 

test as an extension to the Javalanche mutation system. Authors demonstrate its effectiveness by 

Mutation analysis is known to be 

test experiences are already very promising, there is ample opportunity 

to improve the results further: For example, previously generated test cases, manual unit tests, or test cases satisfying a coverage 

Recent advances in software testing allow automatic derivation of tests that reach almost any desired point in the source code. 

There is, however, a fundamental problem with the general idea of targeting one distinct test coverage goal at a time: Coverage 

goals are neither independent of each other, nor is test generation for any particular coverage goal guaranteed to succeed. We 

based approach that optimizes whole test suites towards satisfying a coverage criterion, rather than 

generating distinct test cases directed towards distinct coverage goals. The focus of this paper is on comparing the approach 

Threats to construct validity are on how the performance of a testing technique is 

defined. We gave priority to the achieved coverage, with the secondary goal of minimizing the length.The proposed method 

heuristic that mimics the process 

) is routinely used to generate useful solutions 

evolutionary algorithms (EA), which 

using techniques inspired by natural evolution, such 

proposes on the configuration options and test cases for highly configured system. The input to the system with 

The Traditional Combinatorial Interaction 

It overcomes the masking effects. It makes system highly 

all software solutions are not acceptable in many application domains. For example, web servers 

(e.g., Apache), databases (e.g., MySQL), and application servers (e.g., Tomcat) are required to be customizable to adapt to 

particular runtime contexts and application scenarios. One way to support software customization is to provide configuration 

options through which the behavior of the system can be controlled. While having a configurable system promotes customization, 

it creates many system configurations, each of which may need extensive QA to validate. Since the number of configurations 

grows exponentially with the number of configuration options, exhaustive testing of all configurations, if feasible at all, does not 

A generator is used which generates 

e for every test case. 

Assume configuration options are: o1,o2,o3,o4 and the relevant test cases are as t1,t2,t3;Thus every set of configuration options 

For t1 only can run in configuration options where o1 is 0. 

Similarly t2 can run configuration options where o2 is 1.And t3 does not have any constraints. And applies seeding mechanism to 

This algorithm operates in an iterative manner. At each iteration, we select the best configuration and the set of associated test 

he selection is then included in the test case-aware 

pairs appearing in the selection are marked as covered. The iterations end when every valid t-pair is 

minimize the number of configurations included in test case-aware 

number of test run required. The reason for this 



IJEDRCP1403015 International Jou

 

IV. IMPLEMENTATION 

This project proposes on the configuration options and test cases for highly configured system.The input to the system with 

configuration space and test cases based on the test case on specific constraints.The Traditional Combinatorial Interaction T

is used for the test cases and the configuration options.It overcomes the masking effects.It makes system highly configurable.

case-aware covering arrays aim to ensure that each test case has a fair chance to test all of its valid t

case is scheduled to be executed only in configurations which are valid for the test case so that no masking effects can occu

In other words, for a given configuration space model, a t

which is associated with a set of test cases, indicating the test cases scheduled to be executed in the configuration such th

none of the selected configurations violate the system

configuration that violates the test case-specific constraint of the test case, and 3) for each test case, every valid t

least once in the set of configurations in which the test case is scheduled to be executed. An example presents a 3

aware covering array created for our hypothetical. Since none of the test case

array, each test case has a chance to test all of its valid 3

V. CONCLUSION AND FUTURE WORK 

Combinatorial interaction testing aim to ensure that each test case has a fair chance to test all of its valid t

scheduled to be executed only in configurations which are valid for the test

specific constraint, on the other hand, applies only to the test case that it is associated with and determines the configura

which the test case can run. Objective is to make configurable and customizable system by which the behavior of the system can 

be controlled efficiently. A valuable observation we make is that there is often a tradeoffs between minimizing the number of 

configurations and minimizing the number of test runs in test case

increases the other count. These tradeoffs plays an important role in minimizing the total cost of testing, especially when t

profound practical difference between the cost of configuring the system and the cost of running the test cases.

result will be the highly configured test cases.
general cost model in which the overall cost of testing can be specified at the granularity of option settings and test cases.

REFERENCES 

[1] Gordon Fraser, Andrea Arcuri,” Whole Test Suite Generation”, IEEE transactions on software engineering February 2013,

Volume: 39, Page no: 276 - 291.    

[2] Gordon Fraser, Andreas Zeller, “Mutation

Page No 1-9 

[3] Gordon Fraser, Andrea Arcuri, “Evolutionary Generation of Whole Test Suites”, IEEE transaction 2012,Vol 29, 

639-645. 

[4] Cemal Yilmaz , “Test Case-Aware Combinatorial Interaction Testing”, IEEE transactions on software engineering, vol. 39, 

no. 5,may 2013, page no: 684-706 

[5] R.C. Bryce and C.J. Colbourn, “Prioritized Interaction Testing 

Information and Software Technology, vol. 48, no. 10, pp. 960

[6] J. Czerwonka, “Pairwise Testing in the Real World: Practical Extensions to    Test

Northwest Software Quality Conf., pp. 285

[7] K.-C. Tai and Y. Lei, “A Test Generation Strategy for Pairwise Testing,” IEEE Trans. Software Eng., vol. 28, no. 1, pp. 109

111, Jan.2002. 

[8] M.B. Cohen, M.B. Dwyer, and J. Shi, “Interaction Testing of Highly Configurable Systems in the Presence of Constraints,” 

© 2014 IJEDR | Conference Proceeding (NCETSE

l Journal of Engineering Development and Research (

proposes on the configuration options and test cases for highly configured system.The input to the system with 

configuration space and test cases based on the test case on specific constraints.The Traditional Combinatorial Interaction T

the test cases and the configuration options.It overcomes the masking effects.It makes system highly configurable.

aware covering arrays aim to ensure that each test case has a fair chance to test all of its valid t

case is scheduled to be executed only in configurations which are valid for the test case so that no masking effects can occu

In other words, for a given configuration space model, a t-way test case-aware covering array is a set of configurations, each 

which is associated with a set of test cases, indicating the test cases scheduled to be executed in the configuration such th

none of the selected configurations violate the system-wide constraint, 2) no test case is scheduled to be executed in a 

specific constraint of the test case, and 3) for each test case, every valid t

least once in the set of configurations in which the test case is scheduled to be executed. An example presents a 3

aware covering array created for our hypothetical. Since none of the test case-specific constraints are violated in this covering 

array, each test case has a chance to test all of its valid 3-tuples; no masking effects caused by test skips can o

Fig 2 

Combinatorial interaction testing aim to ensure that each test case has a fair chance to test all of its valid t

scheduled to be executed only in configurations which are valid for the test case so that no masking effects can occur.

specific constraint, on the other hand, applies only to the test case that it is associated with and determines the configura

Objective is to make configurable and customizable system by which the behavior of the system can 

A valuable observation we make is that there is often a tradeoffs between minimizing the number of 

he number of test runs in test case-aware covering arrays. An attempt to reduce one count often 

increases the other count. These tradeoffs plays an important role in minimizing the total cost of testing, especially when t

ence between the cost of configuring the system and the cost of running the test cases.

result will be the highly configured test cases. As a future work, work on cost- and test-case aware covering arrays that support a 

hich the overall cost of testing can be specified at the granularity of option settings and test cases.

Whole Test Suite Generation”, IEEE transactions on software engineering February 2013,

Gordon Fraser, Andreas Zeller, “Mutation-driven Generation of Unit Tests and Oracles”, Ieee transact

Gordon Fraser, Andrea Arcuri, “Evolutionary Generation of Whole Test Suites”, IEEE transaction 2012,Vol 29, 

Aware Combinatorial Interaction Testing”, IEEE transactions on software engineering, vol. 39, 

R.C. Bryce and C.J. Colbourn, “Prioritized Interaction Testing for Pair-Wise Coverage with Seeding and Constraints,” 

Information and Software Technology, vol. 48, no. 10, pp. 960-970, 2006. 

J. Czerwonka, “Pairwise Testing in the Real World: Practical Extensions to    Test-Case Scenarios,” Proc. 24th Pacific 

, pp. 285-294, 2006. 

C. Tai and Y. Lei, “A Test Generation Strategy for Pairwise Testing,” IEEE Trans. Software Eng., vol. 28, no. 1, pp. 109

M.B. Cohen, M.B. Dwyer, and J. Shi, “Interaction Testing of Highly Configurable Systems in the Presence of Constraints,” 

© 2014 IJEDR | Conference Proceeding (NCETSE-2014) | ISSN: 2321-9939 

rch (www.ijedr.org) 78 

proposes on the configuration options and test cases for highly configured system.The input to the system with 

configuration space and test cases based on the test case on specific constraints.The Traditional Combinatorial Interaction Testing 

the test cases and the configuration options.It overcomes the masking effects.It makes system highly configurable. Test 

aware covering arrays aim to ensure that each test case has a fair chance to test all of its valid t-tuples. To this end, each test 

case is scheduled to be executed only in configurations which are valid for the test case so that no masking effects can occur. 

aware covering array is a set of configurations, each of 

which is associated with a set of test cases, indicating the test cases scheduled to be executed in the configuration such that 1) 

wide constraint, 2) no test case is scheduled to be executed in a 

specific constraint of the test case, and 3) for each test case, every valid t-tuple appears at 

least once in the set of configurations in which the test case is scheduled to be executed. An example presents a 3-way test case 

specific constraints are violated in this covering 

tuples; no masking effects caused by test skips can occur. 

 

Combinatorial interaction testing aim to ensure that each test case has a fair chance to test all of its valid t-tuples. Each test case is 

case so that no masking effects can occur. A test case-

specific constraint, on the other hand, applies only to the test case that it is associated with and determines the configurations in 

Objective is to make configurable and customizable system by which the behavior of the system can 

A valuable observation we make is that there is often a tradeoffs between minimizing the number of 

aware covering arrays. An attempt to reduce one count often 

increases the other count. These tradeoffs plays an important role in minimizing the total cost of testing, especially when there is a 

ence between the cost of configuring the system and the cost of running the test cases. The obtained 

case aware covering arrays that support a 

hich the overall cost of testing can be specified at the granularity of option settings and test cases. 

Whole Test Suite Generation”, IEEE transactions on software engineering February 2013, 

Ieee transaction 2010, volume. 1 

Gordon Fraser, Andrea Arcuri, “Evolutionary Generation of Whole Test Suites”, IEEE transaction 2012,Vol 29, Page No: 

Aware Combinatorial Interaction Testing”, IEEE transactions on software engineering, vol. 39, 

with Seeding and Constraints,” 

Case Scenarios,” Proc. 24th Pacific 

C. Tai and Y. Lei, “A Test Generation Strategy for Pairwise Testing,” IEEE Trans. Software Eng., vol. 28, no. 1, pp. 109-

M.B. Cohen, M.B. Dwyer, and J. Shi, “Interaction Testing of Highly Configurable Systems in the Presence of Constraints,”  


