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Abstract: Modeling of an Industrial side port regenerative glass 

tank furnace for float glass manufacturing has been done using a 

Radial Basis Function (RBF) neural network to connect various 

input and output parameters applying   conjugate gradient 

learning. RBF neural network is an intelligent technique that can 

model non-linear problems by learning from the operating data 

and can be used for the prediction of output parameters. The 

glass tank furnace is a complex unit with a large number of input 

and output parameters such as 54 inputs and 44 outputs. In the 

present work a methodology has been developed to identify the 

most important input-output parameters using co-linearity 

analysis of the raw data obtained from the industry as well as 

carrying out sensitivity analysis on the developed RBF neural 

network model. After achieving sufficient reduction in the 

number of parameters, the RBF network is reconfigured to 

estimate the output parameters with Normalized Mean Square 

Error (NMSE) and correlation coefficient(r) as performance 

criteria. The NMSE and ‘r’ values of the output parameters 

range from 0.0572-1101.2768 and 0.022-0.9787 respectively. 

Keywords: Glass tank furnace; RBF model; Neural network; 

Co-linearity analysis. 

 
I. INTRODUCTION 

 

The role of Glass Tank Furnace in a float line is monumental 

for obtaining the desired grade of glass manufacturing. 

However, operating the furnace efficiently is cumbersome due 

to the existence of a large number of operating parameters. 

This also poses problem in modeling the unit as the input 

parameters are correlated nonlinearly with output parameters. 

Thus, to develop an effective and efficient model it is 

necessary that only pertinent input –output parameters should 

be screened out and a non-linear multivariable relationship 

between these be established. This can be effectively done 

using artificial neural network (ANN) models.  

 

An exhaustive literature review shows that a considerable 

number of CFD based models are available for glass tank 

furnaces to simulate different aspects of glass production [1]-

[7]. However, the same is not true for ANN based models. It 

appears from the available literature, that only one NN model 

is present that has been used for predicting glass furnace 

outputs to meet production schedules [8] which does not 

come in the domain of present study. Thus, it can be safely 

concluded that ANN models have hardly been used for 

modeling complex glass tank furnaces where the demand of 

production, for different colored glasses, changes with time. 

The absence of ANN models for Glass Tank furnaces in open 

literature has provided the required motivation to develop 

ANN model using data obtained from a typical Glass Industry 

situated in the Northern part of India. 

 

A. Glass Tank Furnace 

 

Fig. 1 shows the melter section of a Glass Tank furnace in a 

float line. It has 4 main sections such as batch feeding section, 

Regenerator block, bubbler area and neck. Some of the input 

(I/P) and output (O/P) variables, as given in Table 1, that are 

associated with different sections of the melter are provided in 

the table presented with Fig. 1. 

 

The glass melter section is a complex unit due to the fact that 

a large number of unit operation as well as reactions take 

place in this section. In the melter section, the raw materials 

coming from batch preparation unit are charged via four batch 

chargers situated at the rear. The batch feeding section is 

known as the dog house. On both sides of the fusion pool, 

there are burners and their ports are positioned for efficient 

injection of fuel for combustion inside the chamber. The 

furnace is fired with furnace oil at alternate cycles of about 20 

minutes from each side of fusion pool. Two regenerators 

(Block A & B) along the left and right side of the furnace 

function for preheating the combustion air and recovering 

heat from the exhaust gases. The regenerators are constructed 

with refractory bricks and the temperature inside the 

regenerator chamber is that of the exhaust gas. Heat is 

transferred to the reactants and glass melts both by convection 

and radiation. The reactions in the feed material take place on 

entering the feed zone and it forms a melt at around 1400-

1500
o
C. The fining or primary removal of bubbles in molten 

glass is achieved by the operation of gas bubblers which also 

bring turbulence in the melt and induce mixing. The melt 

flows around the „neck‟ (a narrow region downstream of the 

melting area) where the forced homogenization of glass takes 

place through mechanical stirring. One would find the neck 

region water cooled with auxiliary equipment to improve the 

quality of melt glass. 

To bring turbulence to induce mixing, bubblers are used and 

to give uniform temperature, mild electric heating is done in 

the glass melter. 

 

Downstream of the „neck‟ region there is a refiner section 

where removal of the dissolved and trapped gases in the 

melt takes place. Refining agents, which are involved in the 

equilibrium redox reactions producing or consuming gases, 

are usually added to the batch in order to remove 

undesirable bubbles from the glass melt. Proper temperature 

profile needs to be maintained in this section for better 

refining efficiency. The temperature in the refiner varies 

from 1300˚C to 1100˚C as the float line progresses. From 

the refiner section the glass melt flows to the tin bath 

section. 
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Amongst the input parameters the oil flow, secondary air 

flow, Batch% (the amount of fresh feed), pull (Throughput), 

chimney dampener opening are main parameters of interest 

for combustion in furnace. The various output parameters 

such as dog house temperature, crown temperature, refiner 

temperature, canal temperature, feed end temperature and 

regeneration flue gas temperature are the result of 

combustion to transfer heat to the glass melt. A proper 

temperature profile in the glass melting tank is essential to 

meet the quality of the glass produced. In the tank the 

temperature first increases and then decreases as feed moves 

from feed end towards the refiner. Thus, a maximum 

temperature is found at around the middle of the furnace. 

This is done to promote the formation of circulation loops in 

the glass melt which enhances mixing and leads to 

formation of a uniform melt with desired properties. The 

same can be seen from the fuel flows which are highest near 

the middle port. Crown temperatures determine radiative 

heat transfer to the glass melt and the unmelted batch. The 

amount of heat required to melt a fresh batch is more as 

compared to melt recycled glass (cullet). The throughput is 

limited to the acceptable maximum temperatures in the 

furnace which is dictated by the selection of the associated 

refractory for the furnace walls. 

 

 

 

 

 

 

 

 

 

 

 

Symbol Details Parameters I/P no.  O/P no. 

 Crown T.C FCT  O3-O10 

 Pavement T.C DHT, FBT  O1-O2, O11-O17 

 Bubbler  BP I38-I48  

 Stirrer  SRPM I36  

 Regenerator SA, CDO, RFGT, MFGT, CBT I20-I25, I51 O28-O41, O43, O44 

 Batch Charger BCRPM, Batch % I32-I35, I53  

 Burner Oil Flow, % Valve O.P, BPP, MOP  I1-I6, I7-I12, I13-I18, I19  

 Skimbar SP I37  

 
Fig.1 Schematic diagram of the Melter section of Glass Tank furnace 

 

Table 1 List of input-output parameters for Float Glass Melting Furnace 
INPUT PARAMETER OUTPUT PARAMETER 

I/P parameter: Oil Flow(m3/hr) O/P parameter: Dog house Temperature (DHT) (oC) 

I/P No.→  I1 I2 I3 I4 I5 I6 O/P No.→      O1 O2 

Oil Flow  1P 2P 3P 4P 5P 6P DHT      TD1 TD2 

I/P parameter: % Valve O.P. for oil flow O/P parameter: Furnace Crown Temperature(FCT)(oC) 

I/P No.→  I7 I8 I9 I10 I11 I12 O/P  No.→ O3 O4 O5 O6 O7 O8 O9 

%Valve O.P.  1P 2P 3P 4P 5P 6P FCT T1 T2 T3 T4 T5 T6 T7 

I/P parameter: Burner Port Pressure(BPP)(kg/cm2g) O/P No.→       O10 

I/P No.→  I13 I14 I15 I16 I17 I18 FCT       T8 

BPP  1P 2P 3P 4P 5P 6P O/P parameter: Furnace Bottom Temperature(FBT)(oC) 

I/P parameter: Main oil Pressure(MOP) (kg/cm2g) O/P No.→ O11 O12 O13 O14 O15 O16 O17 

I/P No.→       I19 FBT B1 B2 B3 B4 B5 B6 B7 
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MOP       1P O/P parameter: Refiner Temperature(RT) 

I/P parameter: Secondary Air(SA) (m3/hr) O/P  No.→     O18 O19 O20 

I/P No.→  I20 I21 I22 I23 I24 I25 RT     T9 T10 B8 

SA  1P 2P 3P 4P 5P 6P O/P parameter: Neck Bottom temperature(NBT) (oC) 

I/P parameter: % Valve O.P for SA  O/P  No.→       O21 

I/P No.→  I26 I27 I28 I29 I30 I31 NBT       B9 

%Valve O.P.  1P 2P 3P 4P 5P 6P O/P parameter: Working End Temperature(WET) (oC) 

I/P parameter: Batch Charger r.p.m. (BCRPM) O/P No.→    O22 O23 O24 O25 

I/P No.→    I32 I33 I34 I35 WET    T11 T12 B10 B11 

BCRPM    BC1 BC2 BC3 BC4 O/P parameter: Canal Temperature ( CT)  (oC) 

I/P parameter: Stirrer r.p.m.(SRPM) O/P No.→      O26 O27 

I/P No.→       I36 CT      T13 B12 

SRPM       S1 O/P parameter: Regenerator Flue Gas Temperature(RFGT) (oC) 

I/P parameter: Skimbar position(SP) O/P No.→ O28 O29 O30 O31 O32 O33 O34 

I/P No.→       I37 RFGT L1 L2 L3 L4 L5 L6 L7 

SP       SP1 O/P No.→ O35 O36 O37 O38 O39 O40 O41 

I/P parameter: Bubbler Position(BP) RFGT R1 R2 R3 R4 R5 R6 R7 

I/P No.→ I38 I39 I40 I41 I42 I43 I44 O/P parameter: Furnace Pressure (FP)(mmWC) 

BP BP1 BP2 BP3 BP4 BP5 BP6 BP7 O/P No.→       O42 

I/P No.→    I45 I46 I47 I48 FP       PV 

BP    BP8 BP9 BP10 BP11 O/P parameter: Main Flue Gas Temperature ( MFGT)  (oC) 

I/P parameter: G.L/S.P(cm) O/P  No.→       O43 

I/P No.→       I49 MFGT       MF1 

G.L./S.P.       G1 O/P parameter: Chimney Base Temperature (CBT) (oC) 

I/P parameter: Draft (mmWC) O/P No.→       O44 

I/P No.→       I50 CBT       CT1 

Draft       D1          

I/P parameter: Chimney damper Opening (%)(CDO%)          

I/P No.→       I51          

CDO%       CD1          

I/P parameter: Heat Exchanger temp. 2(HXT)(oC)          

I/P No.→       I52          

HXT       HX1          

I/P parameter: Batch %          

I/P No.→       I53          

Batch       BT1          

I/P parameter: Pull(TPH)          

I/P No.→       I54          

Pull       P1          

 

II. DEVELOPMENT OF RBF NN MODEL 

 

The Radial Basis Function neural network (RBF NN) with 

the Gaussian activation function is among the best and most 

widely used feed forward universal approximators for ANN. 

For the development of a RBF NN model a considerable 

amount of input output data of the system is required. For 

this purpose, operating data of the glass tank furnace has 

been collected from a nearby glass industry.  

There are a total of 54 I/P and 44 O/P for this section as 

given in Table 1. Due to limitation on page number the 

values of these data are not shown here. In total, there are 

199 data points. Amongst these 140 points are assigned to 

training set, 20 to cross-validation set and remaining to the 

testing set. Total data is randomized and divided such that 

the mean and standard deviation for the training and testing 

data sets are comparable [9]. A set of input and output 

parameters that are treated as important from operational 

point of view are I1 to I6, I20-I25, I37, I51, I52, I53, I54, 

O3, O4, O5, O6, O7, O8, O9, O43 and O44. These 

parameters are maintained throughout the development of 

RBF NN models. The basis for maintaining  these 

parameters are further substantiated from the results of 

statistical analysis of co-linearity (Correlation coefficient of 

the above parameters are >0.9) and also from the values of  

sensitivity coefficients (> 0.1335 which is the average value 

for the entire I/O parameter set considered for sensitivity 

study) obtained for these parameters.  

 

In this paper, the stop and performance criteria for the RBF 

networks are defined. The methodology to identify the most 

important input-output parameters based on co-linearity 

analysis of the raw data as well as sensitivity analysis on the 

basis of developed neural network model is also presented. 

Finally, a RBF network is developed to estimate the 

important output parameters based on pertinent input 

parameters screened using above technique.  

 

A. Stop Criterion for training  

 

The learning curve for supervised learning is given by the 

plot of mean square error (MSE) versus number of 

iterations. The MSE is given by 
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The MSE will keep decreasing in the training set, during 

supervised learning with the increase in the number of 

iterations but may start to increase in the cross validation 

test set also. This happens when the network starts 

"memorizing" the training patterns. The stopping criterion 

for training is given by the minimum MSE in the Cross 

validation set. 

 

B.  Performance Criteria for Testing 

 

The performance of the network is defined by two 

parameters: normalized mean square error (NMSE), which 

should be minimum and correlation coefficient (r), which 

should have a value near unity. These two parameters are 

defined as: 
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III. METHODOLOGY FOR MODEL DEVELOPMENT 

 

The method adopted for model development is given in the 

following steps: 

I. The data collected is tested against co-linearity to 

remove dependent input and output parameters. 

II. RBF NN model is established based on the 

screened input and output variables obtained from 

Step-I. 

III. Based on the developed RBF NN model (in Step-

II) a sensitivity analysis is performed to select 

important input parameters which affect the output 

most. Based on this analysis a set of important 

input parameters are selected. 

IV. Based on the input parameters screened in Step-III 

and screened independent output parameters from 

Step-I a revised RBF NN is developed. 

 

A. Co-linearity Analysis 

The input as well as outputs data sets should be 

independent. To confirm this, the given input and output 

data sets are tested against co-linearity to eliminate 

dependent variables. For a given data set (input or output), 

correlation coefficient, r, is computed for each variable with 

respect to the other. In fact, variables I36 and I37 are not 

considered for co-linearity test as these are constant 

parameters. In case, the variable has a correlation coefficient 

equal to 0.9 or more (maximum is 1) with respect to the 

other, one parameter out of the two is dropped from set of 

parameters. In such cases, if one of the parameter is 

important as discussed in Section II, it is kept whereas the 

other is dropped. Based on value of r the parameters 

considered are I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, 

I13, I14, I15, I16, I17, I18, I19, I20, I21, I22, I23, I24, I25, 

I26, I27, I28, I29, I30, I31, I32, I33, I38, I49, I50, I51, I52, 

I53 and I54. However, I36 and I37 are not considered for 

this analysis. It shows that total 12 parameters are dropped. 

Thus, total 40 input parameters out of 54 are selected for 

further analysis. Similarly, after co-linearity analysis 24 

output parameters out of 44 are considered. The dropped 

output parameters are O10, O12, O13-O17, O20, O24, O29-

O34 and O36-O40. 

  

 

IV. RESULTS AND DISCUSSION 

 

In the following sections results of two different RBF NN 

are discussed.  

 

A.  RBF NN-1 Model 

 

The input and output parameters screened using co-linearity 

test, discussed in Section III.A, is now used for the 

development of  the model RBF NN-1 with the topology 

(TOPO-1). This topology consists of 40, 40, 24 and 5100 

nodes in input layer, nodes in hidden layer, nodes in output 

layer and no. of epochs, respectively. The model has 40 

inputs and 24 outputs. 

 

The number of nodes in the hidden layer is found by trial 

and error procedure such that the minimum MSE in the 

cross validation set is 0.03 during the training phase. It 

corresponds to the best possible „NMSE‟ and „r‟ values for 

the output parameters during the testing phase of TOPO-1 

as given in Table 2. It shows that ranges of 'NMSE' and 'r' 

are 0.0826-1393.857 and -0.092-0.9591, respectively.  

 

B.  Sensitivity Analysis 

 

In order to further refine the number of inputs for the final 

RBF NN model to be developed, sensitivity analysis is 

carried out using RBF NN-1. In this method, first the mean 

and standard deviation is computed for each input 

parameter. The input is varied from (mean - standard 

deviation) to (mean + standard deviation) and the 

corresponding output is computed using RBF NN-1. These 

computed outputs are then used to evaluate the sensitivity 

coefficient between each input and output parameters.  

 

In order to select the input parameters which affect the 

output parameters most the mean of the sensitivity matrix is 

computed, which is 0.1335. The input parameters, which 

have sensitivity coefficient greater than mean value, are 

considered for analysis otherwise dropped. In this analysis 

the important parameters discussed in Section II are 

accounted irrespective of the value of sensitivity coefficient. 

Thus, dropped input parameters are I7-I12, I26, I27, I29, 

I30, I32, I33, I38, I49 and I50. In the present work a 

parameter in considered for further analysis if it is affecting 

more than 30% of total outputs, which is 8 outputs from 24. 

The number of input and output parameters after sensitivity 

analysis reduces to 25 and 24, respectively.  

 

C. RBF NN-2 Model 
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A final RBF NN model is developed with the topology 

(TOPO-2). It has 25, 28, 24 and 5100 nodes in input layer, 

nodes in hidden layer, nodes in output layer and no. of 

epochs, respectively. The „NMSE‟ and „r‟ values for the 

output parameters in testing phase of RBF NN-2 are given 

in Table 3. It shows that ranges of 'NMSE' and 'r' are 

0.0515-1101.277 and -0.329-0.9787, respectively. Further, 

if average value of 'r' is computed from results shown in 

Table 2 and 3 it is found as 0.63 for both models i.e. RBF 

NN-1 and RBF NN-2. It shows that 25 I/P parameters 

selected for RBF NN-2 correlate the output parameters is 

the same manner as that is predicted by RBF NN-1 with 40 

I/P parameters. Thus, the present methodology can be 

effectively used to screen best input which can control a 

given output. 

 

 

 

Table 2 NMSE and r values of the testing data for RBF NN-1 

 

 O1 O2 O3 O4 O5 O6 O7 O8 O9 O11 O18 O19 

NMSE 0.0826 0.9962 1.9936 0.8641 0.4546 1.3900 0.9611 1.1884 0.5209 0.2631 17.6428 0.5079 

r 0.9591 0.5349 0.7082 0.6053 0.8881 0.3399 0.2676 0.4867 0.8528 0.8852 0.8134 0.8532 

 O21 O22 O23 O25 O26 O27 O28 O35 O41 O42 O43 O44 

NMSE 0.7838 1.3652 0.1531 0.7419 2.1423 1.1698 1.1480 1.1745 1.4056 1393.8573 0.1150 0.2097 

R 0.8625 0.8897 0.9362 0.5214 0.9284 0.7413 -0.074 -0.092 0.1428 0.2262 0.9503 0.8917 

 

 

Table 3 NMSE and r values of the testing data for RBF NN-2 

 

 O1 O2 O3 O4 O5 O6 O7 O8 O9 O11 O18 O19 

NMSE 0.0572 0.9324 0.9653 1.8751 0.3983 1.1593 0.4509 0.9344 0.4922 0.2121 9.0307 0.3570 

r 0.9736 0.5439 0.4441 -0.329 0.8804 0.3920 0.7993 0.4761 0.7914 0.9033 0.8870 0.8928 

 O21 O22 O23 O25 O26 O27 O28 O35 O41 O42 O43 O44 

NMSE 0.7415 18.8030 0.2765 0.0515 0.1298 0.2136 1.0751 1.0187 1.3173 1101.2768 0.3274 0.0631 

r 0.6116 0.8979 0.9332 0.9787 0.9707 0.9212 0.0220 0.1658 0.1192 0.0394 0.8340 0.9714 

 

 

V. CONCLUSION 

 

The multi-input, multi-output system characterizing the 

operation in a glass tank furnace has been modeled using 

RBF neural network approach. A methodology has been 

developed to reduce important input parameters from 54 to 

44 and output parameters from 25 to 24, using co-linearity 

and sensitivity analysis. The NMSE and r ranges from 

0.0515-18.803 and -0.329-0.9787, respectively, for all 

parameters. The developed model can be further used to 

carry out parametric study to find out the most effective 

inputs for a given output.  

 

NOMENCLATURE 

di Desired response for i
th 

exemplar 

dij 
Desired output for exemplar „i‟ at processing 

element „j‟ 

d  Mean desired value for the dataset considered 

N Number of exemplars in the dataset 

P Number of nodes in output layer 

r Coefficient of correlation 

yi Network output for exemplar „i‟ 

yij 
Network output for exemplar „i‟ at processing 

element „j‟ 

y  Mean network output value for the dataset 

considered 
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