Hydro Chemical Characteristics and Groundwater Suitability for drinking and irrigation purposes

A Case study in and Around Singanallur, Coimbatore City, Tamil Nadu, India.

¹Venkateshwari N, ²Bharathi S, ¹pg student, ²pg student, Department of civil engineering, PSR engineering college, sivakasi, virudhunagar, tamilnadu, india.

Abstract - A study of hydrochemical characterization of groundwater and its suitability for drinking and irrigation purposes has been carried out in and around Singanallur, Coimbatore city. sixteen groundwater samples were collected from dug wells and bore wells during Post monsoon season. The collected samples were taken for analysis of various hydro chemical parameters such as pH, Electrical Conductivity, Total Dissolved Solids, Calcium, Magnesium, Sodium, Potassium, Bicarbonate, Carbonate, Sulfate and Chloride. Based on the hydro geochemical results to be carried out into graphical representation such as Piper trilinear diagram, USSL salinity diagram, Wilcox diagram and scatter plot. The hydro geochemical results have to be compare with World Health Organization (WHO), and Indian Standard Institution (ISI) drinking water standards suitable for drinking and irrigation purposes. Multivariate statistical analysis such as correlation matrix and Principal component analysis are used to determined groundwater characters. These analysis have become accepted in identifying variations and source of groundwater pollution.

Index terms - dug well, post monsoon, piper trilinear, salinity

I. INTRODUCTION

Ground water is a vital natural resource. Depending on its usage and consumption it can be a renewable or a non renewable resource. It is estimated that approximately one third of the world's population use groundwater for drinking.Groundwater utilization has increased at an alarming rate over a period of three decades in the study area. The net result is that the groundwater regime of the area has been affected detrimentally, both qualitatively and quantitatively.Geochemical studies of groundwater provide a better understanding of possible changes in quality as development progress.

II. DETAILS ABOUT STUDY AREA

Coimbatore District is a district in the Kongu Nadu region of the state of Tamil Nadu. Coimbatore is the administrative headquarters of the district. It is one of the most industrialized districts and a major textile, industrial, commercial, educational, information technology, healthcare and manufacturing hub of Tamil Nadu.

III. GEOGRAPHIC LOCATION AND DEMOGRAPHY

The Coimbatore city located in between 10 0 10' and 11 0 30' North latitude and 76 0 40' and 77 0 30' East longitude. The town situated 411 meter above the mean sea level. The district covers an extent of 4723 Sq. km., of which, reserve forest comprising of 1052 Sq. km. And the forest cover of the district is about 22 percent of the district geographical area. As per the 2011 Population census Coimbatore district having total population of 34.58 lakh. In this district, both male and female population distributed more or less equally. It is one of the distinctive features of this district. Among the total population, literates were 26.36 lakh, which comprises 76 percent of the total population. The Coimbatore city located in between 10 0 10' and 11 0 30' North latitude and 76 0 40' and 77 0 30' East longitude.

IV. MATERIALS AND METHODS

Sampling methods:

Groundwater samples were collected from 16 representative dug wells and ore wells during Post monsoon season and analyzed to understand the physicochemical variations of water quality parameters using standard methods (APHA 1995).Samples were collected in one liter capacity high density polyethylene (HDPE) bottles. Prior to collection, the bottles were thoroughly washed with dilute HNO₃ acid. Each bottles was rinsed to avoid any possible contamination in bottling and every other precautionary measure was taken.The location of the sampling stations was fixed using Global Positioning System (GPS) and the exact longitudes and latitudes of sampling paints.

Insitu measurements:

The pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS) were measured on site by using HANNA portable water quality meter (HI-9828)

Analytical Methods:

The groundwater water samples were analyzed for physical and chemical parameters by using standard water quality methods (APHA 1995). For the chemical analysis, calcium (Ca^{2+}) and magnesium (Mg^{2+}) concentrations were determined by EDTA

(Ethylene-di-amine-tera-acetate) titration. The concentrations of sodium (Na⁺) and potassium (K⁺) were estimated using Digital flame photometer (DEEP VISION, Model-381). Chloride (Cl⁻) was determined by AgNO₃ (0.01N) titration method using 1mL of potassium chromate (5%) as an indicator. The bicarbonate (HCO₃⁻) content was determined by sulfuric acid titration (0.01N) using phenolphthalein and methyl-orange as indicators. Sulfate (SO₄²⁻) estimation was done using UV/ Visible spectrophotometer. The analyzed groundwater samples show that the value of computed ionic balance error is within the acceptable limit of $\pm 10\%$. All concentrations were expressed in milligrams per liter (mg/l) except pH and EC. The results were evaluated in accordance with the drinking water quality standards given by the World Health Organization (WHO 2004). The groundwater suitability for irrigation was determined by certain indices such as sodium adsorption ratio (SAR), Sodium percentage (Na %), permeability index (PI), magnesium hazard (MH). US salinity diagram and Wilcox plots was carried out to recognize the various hydrogeochemical types in the groundwater and its suitability for irrigation purposes. Major hydrochemical facies were identified through Piper trilinear diagram (Piper 1944) using Aquachem Scientific v4.0 software. Multivariate statistical analysis such as Pearson correlation matrix, factor analysis and cluster analysis was performed using IBM SPSS 19 software.

Ionic distribution of all groundwater samples

TEDR

869

s.	Loc. Name	x	Y	DH	EC	TDS	Ca	Mg	Na	к	COs	HCO ₁	cl	504	NOs	SAR	PI	Na%	мн	RSBC	тн
No				.							,		-								
1	Arugus nagar	77.0154	11.0238	7.2	1001	6410	125	110	837	13	34	954	175	405	34	5.87	21.2	19.3	59.2	-46.85	3840.8
		6	5		6		0	6					3			7	2	1	9		1
2	Lakshmipuram	77.0206	11.0178	7.4	9780	6259	113	100	796	10	43	928	164	452	28	5.87	22.1	20.0	59.4	-41.28	3482.7
			8				0	5					6			0	3	4	1		5
3	RS Puram	77.0256	11.0143	8.05	3766	2410	389	326	405	8	18	346	467	190	6	5.18	31.2	27.8	57.9	-13.78	1157.8
			6													0	0	1	7		2
4	Uppiliyapuram	77.0198	11.0123	7.6	9067	5803	103	969	705	21	38	827	165	390	14	5.34	21.1	19.1	60.6	-38.24	3291.0
L			5				6						1			8	1	8	2		4
5	Indira Nagar	77.0110	11.0124	7.9	4792	3067	570	334	426	16	0	608	814	305	8	4.95	28.9	25.2	49.0	-18.53	1400.7
<u> </u>		2	4								-					4	5	8	9		2
6	NKG Nagar	77.0315	11.0093	8.15	3108	1989	335	324	290	18	0	470	369	130	7	3.82	27.2	23.1	61.4	-9.04	1086.1
-	Criminana Marana	3 0343	8	0.36	2704	4706	170	100	200	42		205	477	446	-	9	26.0	34.6	2	0.50	4
1	Srinivasa Nagar	//.021/	11.0038	8.26	2/91	1/86	270	196	308	12	0	305	4//	116	2	4.92	36.0	31.6	54.4	-8.50	/41.30
•	Saravanamoatti	77 0147	11.0020	9.07	2409	2220	246	294	220	44	26	412	514	212	10	4 50	20.6	26.4	57.4	-10.54	1017.5
°	Saravanampatti	//.014/	11.0050	0.07	3450	2239	340	204	550		20	412	514	213	10	4.50	50.0	20.4	57.4	-10.34	1017.5
9	MHR Nagar	77.0089	11 0045	74	7923	5071	915	786	586	19	21	574	171	404	31	4.85	20.9	19.0	58.5	-36 33	2762.9
-		4	9						200			2/4	0			2	4	5	7	50.55	0
10	Krishna colony	77.0100	11.0031	8.04	3667	2347	314	291	340	17	26	336	705	220	8	4.69	31.2	27.7	60.4	-10.19	991.93
		9	1													8	3	5	0		
11	Co-Op. colony	77.0115	10.9981	8.36	2878	1842	278	197	326	10	4	380	374	167	9	5.16	37.4	32.4	53.8	-7.67	753.37
		3	9													9	4	1	4		
12	Celamman nagar	77.0226	11.0003	7.8	4759	3046	461	386	490	17	8	690	598	170	5	5.75	32.2	28.4	57.9	-11.74	1371.4
		6	4													8	4	1	5		2
13	Vasanth nagar	77.0260	10.9966	7.95	4925	3152	475	363	516	12	21	605	570	236	8	6.13	33.5	29.7	55.7	-13.83	1341.5
		3	6													1	2	9	1		8
14	Nanjappa nagar	77.0170	10.9961	8.12	3917	2507	368	267	378	13	20	346	490	314	8	5.17	32.9	29.3	54.4	-12.73	1010.0
		3	1													6	4	6	2		7
15	Thiru nagar	77.0123	10.9941	7.26	1258	805	118	140	170	6	0	289	116	46	1	3.54	38.3	30.2	66.1	-1.16	435.85
L			5													4	4	3	3		L
16	Agraharam	77.0348	10.9991	7.92	3108	1989	338	226	296	23	32	405	407	204	7	4.32	31.5	27.5	52.3	-10.26	888.13
L		3	9													2	6	0	9		

Analytical results And irrigation water quality parameters of groundwater in the study area

Piper Trilinear diagram for hydrogeochemical facies of study area groundwater

Schoeller plot showing ionic variation in the study area

870

871

USSL Salinity diagram for the classification of irrigation waters (Wilcox 1955)

VI. REFERENCE

- 1. Abdul Jameel. A Evaluation of drinking water quality in Tiruchirappalli Tamil Nadu. Indian J. Environ HLTH vol. 44 No. 2, P 108- 112 (2002).
- 2. Appa Rao B.V. Gopal, V. Karthikeyan, G. Anithapius and Meenakshi. S., Ground water pollution due to tannery effluents in certain areas of Dindigul town of Tamil nadu. Indian. Jour Env Protection, 11,568-571 (1991).
- 3. APHA, Standard methods for the examination of water and waste water (19th Edn.). American public health association, Washington DC (1995).
- 4. BIS (1991) Bureau of Indian Standards, IS:10500, Manak Bhawan, New Delhi, India
- 5. Manivasakam. N. Physico-chemical examination of water sewage and Industrial effluents. Pragati Prakasham Meerut(1984).
- 6. Munavar M, Limonological studies on Fresh water ponds of Hyderabad I Biotype, hydrobiologia 35 127 (1970).
- 7. Piper, A.M. (1944). A graphical procedure in the geochemical interpretation of water analysis: American Geophysical Union Trans., v. 25, pp. 914-923.
- 8. Ragunath, H.M. (1983). Groundwater. Wiley Eastern Limited, NewDelhi.
- 9. Ramakrishnan (1998). Groundwater. Ramakrishna Publishers, Chennai.
- Ramasamy. S. Sridharan. S. Physico chemical characteristics of surface and ground waters in the tannery belt of Vaniyambadi and Ambur, North Arcot District Tamil Nadu, Poll Res. 17 (2): 141 - 147(1998).
- 11. Reddy, P.R., Vinod, K and K. Seshadri (1996). Use of IRS-1C Data in Groundwater Studies. Current Science. Vol. 70. pp. 600-605.
- 12. Selvakumar S, Chandrasekar N, Srinivas Y, Simon peter T, Magesh NS (2014) Evaluation of the groundwater quality along coastal stretch between Vembar and Taruvaikulam, Tamil Nadu, India; a statistical approach. J Coast Sci 1:22–26
- Selvakumar S, Ramkumar K., Chandrasekar N, Magesh NS., Kaliraj S (2015) Groundwater quality and its suitability for drinking and irrigational use in the southern Tiruchirappalli district, Tamil Nadu, India. App. water science. DOI 10.1007/s 13201-014-0256-9.
- 14. WHO for drinking water quality, World Health Organisation Geneva (2004).