
© 2017 IJEDR | Volume 5, Issue 3 | ISSN: 2321-9939

IJEDR1703054 International Journal of Engineering Development and Research (www.ijedr.org) 364

Analysis of Frequency Change for Compute-

Intensive Task using Scheduler –Driven Frequency

Scaling scheme in Linux Kernel

1Prof. Sunita Dhotre, 2Pooja Tanaji Patil, 3Dr. Suhas .H Patil

1 Associate Professor, 2PG Scholar, 3Professor

Department of Computer Engineering,

Bharati Vidyapeeth Deemed University College of Engineering

 Pune, India

__

Abstract— Linux based systems are getting more numerous and complex day by day. To meet the multiplicity of user

need, the CPU frequency and software complexity is also increasing which demands the high power in such systems. But,

the performance of system did not increase significantly. To maintain the performance of such system the analysis of

frequency change is an essential task. The analysis of change in frequency leads to consume less power in the system. To

reduce the energy consumed by these embedded systems the frequency of CPU has to minimize. This paper enhances the

performance of Linux Operating systems by minimizing the response time with changing the frequency of scheduler-

enabled DVFS scheme by using Compute- Intensive Task.

Keywords — Linux Operating system, power management, performance, Response Time, CFS, CPU Frequency.
__

I. INTRODUCTION

Modern Linux operating system is experiencing considerable growth in performance and functionality to meet the multiplicity

of user need. For such systems, the CPU frequency and software complexity [1] is increasing day by day which demands the high

power. But, the performance of system did not increase significantly. Hence, the user experience is greatly affected due to higher

Response time. So, performance maintenance is the biggest challenge faced by today’s Linux based systems. Performance of such

systems can be maintained by scaling the frequency [4] and minimizing the response time. The frequency scaling scheme in

Linux operating system is dynamic voltage and Frequency Scaling (DVFS). DVFS framework is supposed to save the power [1]

at highest level by executing the processes at minimum performance level. The proposed research work emphasis on designing a

Scheduler-enabled DVFS Scheme by estimating frequency change analysis for Compute-Intensive Task to minimize the

Response time and to enhance the system performance.

II. LITERATURE SURVEY

In the paper [3] author C. S. Wong, R. D. Kumari, and J. W. Lam has compared the two Linux kernel scheduler such as O (1)

and completely fair scheduler (CFS) with regard to fair sharing policy and interactive performance. In Linux kernel 2.6 O(1)

scheduler is used while in 2.6.23 uses the CFS. O(1) replaced by CFS . The results from the test conclude that the CFS is fairer

than O(1) in the case of CPU bandwidth distribution and interactive performance.

In paper [7] One of the critical issues of OS is the distribution of several processes among the the multiple cores in order to

achieve the fairness, and better performance. Fairness is very important criteria of any operating system scheduler. This allocation

of tasks is done by Load balancer by transferring the task from heavily loaded processor to lightly loaded processor. The

algorithm proposed by author provides in paper [7] is the balancing of the threads by its time which are running on both heavy

and light processores. To evaluate the effectiveness of proposed scheme, author implemented one algorithm in Linux Kernel and

demonstrate the efficiency of by performing different experiment. Finally, the results evalution of proposed algorithm concluded

that author’s proposed scheduler attains high performance and better fairness as compaired to earlier schedulers which is

advantageous for multicore processors

In paper[2] author J. Wei, R.Ren, Juarez, F. Pescador provides the scheduling algorithm such as Energy based Fair Queuing

(EFQ) which consume the energy on many devices. So, the CFS is extended by adding the new scheduling policy SCHED_EFQ.

In the paper [4] author has estimated the response time performance for smartphones. This response time estimation scheme is

proposed by applying DVFS at CPU and CFS at Linux kernel. DVFS which controls scheduling and reduces the power

consumptions in smartphones through adaption of CPU core frequency level and system voltage. The change in CPU frequency

ultimately changes the Response Time. The effectiveness of proposed scheme is demonstrated by capturing various changes in

frequency levels based on executing various background applications for Smartphone.

The research paper [1] focuses on maximizing user experience in battery limited embedded system by using Energy-fair

queuing which is class of energy-aware scheduling algorithm. Author merges the traditional energy-efficient algorithm with EFQ

to maximize user experience. The other energy-saving scheme such as combination of DVFS with the application self-adaption

can be used to consume power and maximizing user experience.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2017 IJEDR | Volume 5, Issue 3 | ISSN: 2321-9939

IJEDR1703054 International Journal of Engineering Development and Research (www.ijedr.org) 365

III. RELATED WORK

The above observations and literature studies [3-7] indicate that CFS is not connected with the frequency scaling scheme of the

CPU. As there is a possibility to enhance the system perforamnce by minimizing the response time and by changing the

frequency,[29][30] CFS can be linked to the Dynamic Voltage and Frequency Scaling (DVFS) Algorithm. This leads to the need

of design of a DVFS Scheme with an added scheduler governor also the response time of Compute-Intensive Task can be

estimated to enhance the system performance.

This leads to the need of design of scheduler driven frequency scaling scheme wherein the responsive time of Compute-

Intensive Task is estimated by analyzing the change in frequency. Scheduler-driven Frequency scaling scheme desires to exploits

both the global information and per-task in the scheduler to improve the frequency selection scheme and achieves better

performance and lesser energy consumption[5] so, to obtain the efficient performance of the system, the proposed work utilizing

the multi-threaded program executing in a multi-processor environment. The multithreaded program is implementing by compute-

intensive task where the only CPU is utilized.

Completely Fair scheduler (CFS)

The latest Linux kernel scheduler is Completely Fair scheduler (CFS) [7][12][31]which was introduced in Linux Kernel 2.6.23

and is continued in 2.6.24. CFS is “Desktop” process scheduler which was implemented by Ingo Molnar. Its core design can be

summed up in single sentence: “CFS basically models an 'ideal, precise multitasking CPU' on real hardware [9][14].” The primary

function of CFS is to divide the processor time of resources between the runnable processes.

The CFS Scheduler supports the following scheduling policies [11] -

SCHED_NORMAL /SCHED_OTHER : It is used for regular tasks.

SCHED_FIFO : Uses the First-In-First- Out Scheduling Policy.

SCHED_BATCH : It is used for running the tasks for longer time without preempting it .

SCHED_IDLE: it is used to avoid the tasks to get into the priority.

SCHED_RR : Similar to SCHED_FIFO, but uses the Round Robin scheduling algorithm. It is impossible to get the ideal CPU

in reality, but the CFS tries to imitate such ideal processor in system [16]. For scheduling the process CFS uses the process priority

and timeslice [11][17]. timeslice is defined as the total amount of time taken by process to run. The process which is having the

large timeslice is considered as higher priority process.

Time slice [16][31] is defined as-

 Timeslice=share×period (1)

in equation (1), the period is the total time slice that is used by scheduler for all tasks. The minimum period is 20ms. To

calculate the priorities of tasks, CFS uses task weight represented by load.weight and divides runtime by tasks weight which is

saved as vruntime in a RBtree.The nice value given to each process according to user’s perspective determines the priority of

process. The ratio of time taken by any processor is determined by the difference between the nice values of runnable process and

the nice value of process itself. To decide the balance among multiple tasks CFS inaugurated the concept of “virtual runtime

(vruntime)” [13]. Virtual runtime elucidate as the total amount of time provided to given task. The task which is having small

virtual time means it has higher priority and will schedule first. The virtual runtime can be considered as a weighted time slice,

which is represented by following equation- [11][12]

𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑟𝑢𝑛𝑡𝑖𝑚𝑒+=
(𝑑𝑒𝑙𝑡𝑎_𝑒𝑥𝑒𝑐)(default weight of process)

𝑠𝑒(𝑙𝑜𝑎𝑑.𝑤𝑒𝑖𝑔ℎ𝑡)
 (2)

From the equation (2) of virtualruntime , delta_exec is the total amount of execution time of task, default weight of process

means the unit value of weight and load.weight is weight of task/entity[19][31]. The weight of runnable processes is decided by

their priority. By assigning the proper weights to processes the CFS maintains the fairness. In CFS share is calculated as –

share =
weight of schedulable entity

total weight of all entities in CFS runqueue
 (3)

This scheduler also maintains the fairness for those processes which are waiting for I/O events to occur. Instead of maintaining

these processes in run queue, the Completely Fair Scheduler maintains the time order Red-Black tree (RBTree) [31] in a view to

decide the task to schedule next on CPU. each node in tree is task/process in the system, and key value of the node represent the

virtual runtime of the specific task. According to the definition of Red-black tree, left most node has smallest key value, which

means that this task has highest priority with smallest virtual runtime and vice versa.

Hence CFS has to take left most tasks for processing and once the task is processed then it is removed from tree.

Completely Fair Scheduler algorithm

Implementation of pick_next_task_fair() of CFS schedule class [10] [11][31]–

1. It first examine whether there is any running task in cfs_rq or not.

2. If the running task is there in cfs_rq the it calls pick_next_entity() method which implicitly call rb_entry() to obtain the

next task with smallest vruntime value.

3. The method sets_next_entity conduct updation in values of sched_entity of node/ next task which is obtained in step 2 .

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2017 IJEDR | Volume 5, Issue 3 | ISSN: 2321-9939

IJEDR1703054 International Journal of Engineering Development and Research (www.ijedr.org) 366

4. To return the obtained next task group CFS algorithm calls group_cfs_rq. This grouping feature attains fairness among

users as well as groups rather than just among the tasks.

DVFS (Dynamic Voltage and Frequency scaling)

The DVFS holds a set of governors namely Performance, Powersave, userspace, Conservative and Ondemand[15] [24]which

allows to conser the CPU power in Linux kernel. These CPU Frequency Scaling Governors allows the drives to set the target

frequency. Dynamic frequency Scaling [16] mechanism is applied for using the CPU efficiently.

 Performance Governor- This sets the processor clock speed to the maximum to allow the maximum performance.

This governor does not allow saving the power of system but it can allow the dynamic changing frequencies.

 Powersave Governor - This governor sets the CPU to the lowest available frequency however a range of frequencies

can be adjusted.

 Userspace Governor - The frequency is set manually in this governor. It does not dynamically change the frequency.

 Ondemand Governor - This governor was introduced in the Linux Kernel 2.6.10. It dynamically changes the CPU

frequency depend on the utilization of Processor.

 Conservative Governor – Based on utilization of processor this governor dynamically adjusted the frequency by

gradually increasing the frequency level.

These governors operate at a particular fixed frequency and have a disconnected design with the Completely Fair Scheduler.

Linux CFS is a strictly fair scheduler having various insertion points which can govern the CPU Frequency [17].

Compute-Intensive Task

Compute-Intensive is any task or application of computer which needs a lot of CPU/Computation[24]. These tasks are spends

more time in executing the codes so also known as CPU bound processes in the operating system (OS). Linux scheduling policies

attempt to achieve two goals such as fast response time and high throughput. So, in order to evaluate the performance

measurements of scheduler-driven frequency scaling scheme the Compute-intensive tasks are implemented. The change in

frequency is estimated by executing the Compute Intensive Task to enhance the performance of the system.

IV. CONTRIBUTION OF RESEARCH

This thesis works on designing the scheduler driven frequency scaling scheme and executing compute intensive task for

minimizing the response time and to achieve efficient performance. The analysis of change in frequency will be carried out by

running Compute- Intensive Task which utilizes the system performance. Hence the objectives of proposed system are-

 The current array of cpufreq governors is replaced with a new governor.

 To invoke DVFS methods through CFS algorithm to design the scheduler-driven frequency scaling by creating a new

patch of the algorithm in existing algorithm of CFS.

 Analysis of Frequency and response time by executing Compute Intensive application.

 Comparative analysis of proposed shed governor with existing governors by graphical representation of frequency vs.

response time for compute intensive task.

V. PROPOSED SYSTEM

This research works on designing the scheduler-driven frequency scaling scheme to enhance the system peroformance. The

analysis of change in frequency will be carried out by running Compute- Intensive Task which utilizes the system performance.

Considering that the scheduler in the kernel plays a vital role in today’s multi-core operating systems for estimating the

performance. The proposed system aims to obtain the connectivity among the scheduler and DVFS scheme in order to minimize

the Response time of the process and provide the better system performance.

Fig. 1 : System Level Implementation

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2017 IJEDR | Volume 5, Issue 3 | ISSN: 2321-9939

IJEDR1703054 International Journal of Engineering Development and Research (www.ijedr.org) 367

As shown in fig.1 , the Existing DVFS algorithm is loaded in the kernel module along with the existing set of governors. The

modifications are done in CFS header file sched.h and CFS Code fair.c which adds a new governor ‘sched’ having new cpufreq.

The cpufreq subsystem of Linux provides an interface to manage the CPU frequency. In Linux the governors scale the frequency

dynamically and in controlled way. The new capacity of the CPU is generated at various points within CFS including Load

Balance, and finally a call is made to update the capacity of the CPU which then converts the new minimum capacity request into

the CPU Frequency. Then the Compute-Intensive task is executed by setting different governors on DVFS loadable kernel for the

analysis of change in CPU frequency and to estimate the Response time accordingly.

Fig. 2 : Flow Chart of Proposed System

Algorithm of Proposed System –

 { For each CPU : cur_cpu}

1. for all sd in sched_domains of cur_cpu do

2. calculate the load of runqueue;

3. if sd has idle cores then

4. first_cpu = 1st idle CPU of sd

5. else

6. first_cpu = 1st CPU of sd

7. end if

8. if cur_cpu ≠ first_cpu then

9. continue

10. endif

11. for all sched_group sg in sd do

12. enqueue the tasks in runqueue;

 for the tasks that are new or waking up trigger the frequency switch

13. if (task is new || tasks is wakedup) update capacity of (cpu(rq))

14. sg.load=average loads of CPUs in sg

15. for dequeue remove the task from the rbtree and update the fair scheduling status

16. if (task is in sleep state) update capacity of (cpu(rq))

17. Raise the target cpu’s Operating Point Frequency;

18. set the driver target frequency using cpu frequency table with new value

19. end for

20. busiest = overloaded sg with the highest load

21. (or, if inexistent) imbalanced sg with highest load

22. (or, if inexistent) sg with highest load

23. local = sg containing cur_cpu

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2017 IJEDR | Volume 5, Issue 3 | ISSN: 2321-9939

IJEDR1703054 International Journal of Engineering Development and Research (www.ijedr.org) 368

24. if busiest.load ≤ local.load then

25. continue

26. end if

27. busiest_cpu = pick busiest cpu of sg

28. try to balance load between busiest_cpu and cur_cpu

29. if load cannot be balanced then

30. exclude busiest_cpu, goto line 20; end if

31. end for

VI. RESULT ANALYSIS

For the experimentation the scheduler is configured in desktop mode and Compute Intensive task is executed. The Linux kernel

4.4.0-rc2 [30] is installed on Ubuntu 15.10 which contains DVFS Governors. The available frequency for Intel Core i5 Processor

ranges from 2.5 GHz to 0.8 GHz in the steps of 2.5 GHz, 2 GHz, 1.8GHz, 1.6GHz, 1.4GHz, 1.2GHz, 1GHz and 0.8 GHz.

Table 1 : Experimental Setup

Kernel Name Linux

Linux Kernel Version rc 4.4.2

Operating System Ubuntu 15.10

Processor Intel x86 i5 Processor

CPU Cores Quad Core Processor

CPU Frequencies 2.50GHz,2GHz,1.8GHz, 1.6

GHz, 1.4 GHz, 1.2 GHz, 1

GHz, 0.8 GHz

Fig 3 : Benchmarking Methodology

Analysis of Frequency Change using Compute-Intensive Task

The proposed research work is carried out by implementing the Monte Carlo algorithm with calculation of Pi (π) value in

multithreaded simulation as Compute Intensive task. The compute intensive task as Pi (π) calculation C program generally

implemented by two algorithms, one is discrete integration method and another is Monte Carlo method.

C program for calculating pi value with Monte Carlo algorithm uses POSIX thread (Pthread) libraries which were available as

part of GNU C compiler. It is multithreaded parallel compute intensive program to demonstrate the problem of unfairness and to

evaluate the performance of scheduler driven DVFS scheme in multi-core environment. The program consists of Number of

thread and number of iterations as the input parameters. This multithreaded program as compute-intensive task is utilized to get

the better performance, and to prove the effectiveness of scheduler enabled DVFS scheme.

 The compute-intensive task as pi (π) calculation c program with Monte Carlo simulation is chosen to get the desires result of

Scheduler enabled DVFS scheme. It is concluded that [] the result will be precise for more number of thread and for more number

of iterations. Hence, the numbers of threads are made very large to ensure that the program execution approximately takes few

seconds for execution. The number of thread has huge impact on result as the experimentation used the time command to obtain

system time as well as user time. As compute intensive task required more system time, in program user time is calculated to

show the difference among user and system time.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2017 IJEDR | Volume 5, Issue 3 | ISSN: 2321-9939

IJEDR1703054 International Journal of Engineering Development and Research (www.ijedr.org) 369

The tests are produced under normal desktop environment with no other compute intensive task is running. The multithreaded pi

calculation program is initiated through Schell script where the program is executed with the fixed priority setting to nice value 0.

Schell script runs the program for large number of threads to get system time. First, the test is performed without the sched

governor. Each simulation is done 1000 times by setting conservative, ondemand, powersave, performance and userspace for 4

cores, 3cores, 2cores and 1core. The frequency change is noted in time_in_state and trans_table .

The same results are produced by setting sched governor for all 4 cores to compare the response time and frequency change of

scheduler enabled DVFS scheme for Compute-intensive task with other DVFS governor on DVFS loadable kernel. The CPU

Frequency status provides the status of time_in_state table for each CPU core that is the total time spent by each CPU at the given

frequency.

These results are shown in table-

Table 2. shows the average Response Time for all set of governors by executing Compute Intensive task 1000 times on DVFS

loaded Linux kernel and proposed sched governor.

Table 2: Average Response Time for Compute Intensive Task

Governors Avg. Response Time in

sec.

Conservative 0.32532

Ondemand 0.31899

Powersave 0.37137

Performance 0.3267

Userspace 0.46269

Sched 0.30326

Fig 4 : Average Response Time taken by Compute intensive task for different governors

 Fig. 4.represents the average response time taken by compute intensive task for all governors. Graphs show the comparison of

all default governors with sched governor. The average system response time for sched governor is 0.30326 seconds which

concludes that the proposed system with scheduler enabled frequency scaling scheme gives minimum Response time for compute

intensive task as compared to existing governors.

 During the whole experiment Hyper-threading is disabled, and results are analyzed for different cores. A Compute Intensive

task is executed and the CPU Utilization is monitored. During the process, the time_in_state values at each frequency level are

monitored.

 The table 3 below shows the time_state values for quad core. The non-zero values in the last column indicate that there is a

frequency switch in the patched kernel. Hence the performance and Scheduler governor are compared to prove the correctness of

values.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

A
v

g
.
R

es
p

o
n

se
 T

im
e

(s
ec

o
n

d
s)

Compute Intensive Task

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2017 IJEDR | Volume 5, Issue 3 | ISSN: 2321-9939

IJEDR1703054 International Journal of Engineering Development and Research (www.ijedr.org) 370

Table 3 : time_in_state values for all set of governors with quad cores.

Number

of Cores Quad Core

Frequency

(KHz) Conservative Ondemand Performance

Powersave Userspace Sched

2501000 193323 325808 412709 333036 333036 31649

2500000 2766 2786 2786 2786 2786 0

2000000 179308 209266 469140 450074 450074 4022

1800000 0 0 0 0 0 1

1600000 201659 201659 293736 289853 207922 2

1400000 0 0 0 0 0 1

1200000 0 0 0 0 0

1

1000000 0 0 0 0 0 9

800000 0 0 0 0 0 42

 Table 4.below shows the average response time taken by compute intensive and according change in frequency for all

governors. The frequency is taken as the maximum frequency with which particular governor works for the purpose of result

analysis.

Table 4 : Avg. Response time and Maximum frequency taken by compute intensive task for all governors.

Governor Frequency Avg. Response

Time

Conservative 193323 0.32532

Ondemand 325808 0.31899

Powersave 333036 0.37137

Userspace 333036 0.46269

Performance 412709 0.3267

Sched 31649 0.30326

Fig 5 : Frequency vs. Response Time for compute Intensive task

 Fig 5. shows the graph of frequency vs. Response Time for compute Intensive task. The proposed sched governor results are

compared with performance governor to show that proposed system minimizes the Average Response time and accordingly

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.325

0.33

412709 31649

Frequency

R
es

p
o
n

se
 T

im
e

in
 s

ec
.

Frequency in KHz

Frequency vs. Response time

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2017 IJEDR | Volume 5, Issue 3 | ISSN: 2321-9939

IJEDR1703054 International Journal of Engineering Development and Research (www.ijedr.org) 371

frequency level. After executing compute intensive task Graph shows that performance governor runs with frequency 412709

KHz and takes average response time as 0.3267 seconds while the frequency at which sched governor runs is 31649 and average

Response Time taken as 0.30326 seconds. Hence , comparison is made among performance and sched governor on the basis of

frequency vs. Response Time graph which proves that the proposed sched governor takes minimum frequency level and average

Response time for executing any Compute Intensive Task. So, proposed system ultimately enhances the performance of system.

VII. CONCLUSION

 Completely Fair scheduler has disconnected design from frequency scaling algorithm, so CFS could not controls the CPU

frequency. Proposed research work achieved the connection among CFS and Dynamic Frequency scaling scheme. The research

work focuses on enhancing the performance of Linux system by analyzing frequency and Response time for scheduler-driven

frequency scaling scheme with the help of Compute-intensive Task. It is proved that DVFS can be governed by scheduler related

variables. Comparison is shown among existing governor and proposed governor- sched. Considering the hardware complexity

and daemon processes of proposed experimental setup the compute intensive task is executed and the average response time is

calculated. For sched governor the Avg. Response Time is 0.30326 seconds. By assuming that the userspace governor takes 100%

Avg. Response Time it is calculated that sched governor takes 65.54% Response Time. Hence, it concludes that the proposed

system with scheduler enables sched governor minimizes Avg. Response time by 34.46% as compared to existing governors.

Finally for various set of cores the frequency is analysed using time_in state table by executing compute-intensive task.

Performance governor runs with frequency 412709 KHz and takes average response time as 0.3267 seconds for compute

intensive task while the frequency at which sched governor runs is 31649 and average Response Time taken as 0.30326 seconds.

Hence, comparison is made among performance and sched governor on the basis of frequency vs. Response Time graph which

proves that the proposed sched governor minimizes frequency level by 7.66% as compared to existing frequency scaling scheme.

Hence, by minimizing Avg, Response Time 34.46% and Frequency by 7.66 % it is proved that the proposed system with newly

added ‘sched’ governor gives significant difference with existing governor and enhances the overall performance of system .

This is a preliminary work which forms the base for research in designing an operating system controlled Frequency scaling

scheme which utilizes the CPU Frequency changes.Hence proposed system achieves the minimum Response time for scheduler

driven frequency scaling scheme by executing Compute intensive task to enhance the overall performance of system.

REFERENCES

[1] J. Wei, E. Juarez, M. J. Garrido, and F. Pescador, “Maximizing the user experience with energy-based fair sharing in

battery limited mobile systems,” IEEE Trans. Consum. Electron., vol. 59, no. 3, pp. 690–698, 2013.

[2] J. Wei, R. Ren, E. Juarez, and F. Pescador, “A linux implementation of the energy-based fair queuing scheduling

algorithm for battery-limited mobile systems,” IEEE Trans. Consum. Electron., vol. 60, no. 2, pp. 267–275, 2014.

[3] C. S. Wong, R. D. Kumari, and J. W. Lam, “Fairness and Interactive Performance of O(1) and CFS Linux Kernel

Schedulers,” no. 1, 2008.

[4] R. C. Garcia, J. M. Chung, S. W. Jo, T. Ha, and T. Kyong, “Response time performance estimation in smartphones

applying dynamic voltage & frequency scaling and completely fair scheduler,” Proc. Int. Symp. Consum. Electron. ISCE, vol. 2,

no. 2, pp. 1–2, 2014.

[5] C. S. Wong, I. Tan, and R. Deena, “Towards Achieving Fairness in the Linux Scheduler,” pp. 34–43.

[6] S. Wang, “Fairness and Interactivity of Three CPU Schedulers in Linux,” pp. 2–7, 2009.

[7] S. M. Mostafa, H. Amano, and S. Kusakabe, “FAIRNESS AND HIGH PERFORMANCE FOR TASKS IN GENERAL

PURPOSE MULTICORE SYSTEMS,” vol. 29, no. December, pp. 74–86, 2016.

[8] J. Lozi, J. Funston, F. Gaud, V. Qu, and A. Fedorova, “The Linux Scheduler : a Decade of Wasted Cores.”

[9] “Completely Fair Scheduler _ Linux Journal.” http://www.linuxjournal.com/magazine/completely-fair-scheduler .

[10] “Tuning the Task Scheduler _ System Analysis and Tuning Guide _ openSUSE Leap 42.”

https://doc.opensuse.org/documentation/leap/tuning/html/book.sle.tuning/cha.tuning.taskscheduler.html.

[11] G. Cheng, “A Comparison of Two Linux Schedulers,” Master thesis, pp. 1–89, 2012.

[12] Yigui Luo, Bolin Wu, “A Comparison on Interactivity of Three Linux Schedulers in Embedded System”,

Communications, Computers and Signal Processing(PacRim), 2011 IEEE Pacific Rim Conference, pp. 494-498, August 2011.

[13] Wei-feng MA, WANG Jia-hai, “ Analysis of the Linux 2.6 Kernel Scheduler” 2010 IEEE International conference on

computer Design and Applications, pp.71-74, 2010

[14] Prajakta Pawar, SS Dhotre, Suhas Patil, “CFS for Addressing CPU Resources in Multi-Core Processors with AA Tree”,

International Journal of Computer Science and Information Technologies, Vol. 5 (1), 913-917, 2014

[15] Hong Xu, Rong Tang, “Study and Improvements for the Real-time Performance of Linux Kernel”, 3rd International

Conference on Biomedical Engineering and Informatics, pp. 2766-2769 , 2010

[16] “Power Management & DVFS.” http://www.arteris.com/power-management-dvfs .

[17] R. Ge, R. Vogt, J. Majumder, and A. Alam, “Effects of Dynamic Voltage and Frequency Scaling on a K20 GPU,2010”

[18] Poonam Karande, SS Dhotre, Suhas Patil, “Illustration of Task Scheduling in Heterogeneous Quad-Core Processors”,

International Journal of Engineering and Technology Research, Vol 03, Issue 08, Pages:1389-1393, May 2014

[19] Dilipkumar, Vora Shivani, M. Tech, and S. S. Dhotre. "Runtime CPU Scheduler Customization Framework for Real

Time Operating System."

[20] Kabugade, Rohan R., S. S. Dhotre, and S. H. Patil. "A Modified O (1) Algorithm for Real Time Task in Operating

System."

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2017 IJEDR | Volume 5, Issue 3 | ISSN: 2321-9939

IJEDR1703054 International Journal of Engineering Development and Research (www.ijedr.org) 372

[21] Wenbo Wu, Xinyu Yao, Wei Feng, Yong Chen, “Research on Improving Fairness of Linux Scheduler”, Proceeding of

the IEEE International Conference on Information and Automation, China, pp. 409-414,August 2013

[22] Jyotish J., O. Sujisha, T. Gilesh, Thayyil B., “On the Fairness of Linux O(1) scheduler, Fifth International Conference on

Intelligent Systems, Modelling and Simulation, IEEE Computer Society, 2014.

[23] P. Tanaji, S. Dhotre, and R. Shankar, “A Survey on Fairness and Performance Analysis of Completely Fair Scheduler in

Linux Kernel,” vol. 9, no. 44, pp. 495–502, 2016.

[24] P. T. Patil and P. S. Dhotre, “Response Time Analysis Using Linux Completely Fair Scheduler for Compute-Intensive

Tasks,” vol. 5, no. 2, pp. 377–380, 2017.

[25] R. Shankar, S. Dhotre, and P. Tanaji, “A Survey on Response Time Analysis Using Linux Kernel Completely Fair

Scheduler for Data Intensive Tasks,” vol. 9, no. 44, pp. 351–358, 2016.

[26] R. S. Jamale, S. Dhotre, and S. H. Patil, “Data Intensive Task Analysis using Dynamic Voltage and Frequency Scaling

Governors,” vol. 5, no. 2, pp. 457–461, 2017.

[27] A. Silberschatz, P.B. Galvin, G. Gagne, “Operating System Concepts,” 7th Edition, JohnWiley & Sons Inc.,2005

[28] Richard Petersen, “The Complete Reference” Linux, Second Edition, Tata McGraw Hill.

[29] Daniel P. Bovet & Marco Cesati”. Understanding the Linux Kernel, OReilly October 2000.

[30] “Inside the Linux 2.” https://www.ibm.com/developerworks/library/l-completely-fair-scheduler/.

[31] P. Tanaji, S. Dhotre, and R. Shankar, “A Survey on Fairness and Performance Analysis of Completely Fair Scheduler in

Linux Kernel,” vol. 9, no. 44, pp. 495–502, 2016.

[32] “sched scheduler-driven CPU frequency selection [LWN.” https://lwn.net/Articles/667281/ .

[33] “Improvements in CPU frequency management [LWN.” https://lwn.net/Articles/682391/.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

