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Abstract-Advances in information technology and i ts wides pread growth in several areas of business, 

engineering,medical, and scientific studies are resulting in information/data explosion. Knowledge 

discovery anddecision-making from such rapidly growing voluminous data are a challenging task in 

terms of data organizationand processing, which is an emerging trend known as big data computing, a 

new paradigm thatcombines large-scale compute, new data-intensive techniques, and mathematical  

models to build data analytics.Big data computing demands a huge storage and computing for data 

curation and processing thatcould be delivered from on-premise or clouds infrastructures. Therefore a 

new robust architecture is needed to store and process information.  Initially new programing approaches 

developed based on parallel processing and then distributed computing programing models were 

developed. This is where Hadoop, S park,Flinkand Storm frameworks are developed and deployed for big 

data processing since last few years. These platforms are showing promising results.This paper discusses 

the evolution of big data computing platforms and compare Hadoop, S park, Flink and Storm framework. 

 

Index Terms-Words: Big Data, Hadoop, S park, Flink and Storm 

__________________________________________________________________________________________ 

I. INTRODUCTION 

Big data computing is an emerging data science paradigm of mult idimensional informat ion mining for 

scientific discovery and business analytics over large-scale infrastructure. The data collected/produced from 

several scientific explorat ions and business transactions often require tools to facilitate efficient data 

management, analysis, validation, visualizat ion, and dissemination, while preserving the intrinsic value of the 

data [1–5]. The IDC [6] report predicted that there couldbe an increase of the digital data by 40 times from 2012 

to 2020. New advancements in semiconductor technologies are eventually leading to faster computing, large-

scale storage, and faster and powerful networks at lower prices, enabling large volumes of data preservation and 

utilizat ion at faster rate. Recent advancements in cloud computing technologies are enabling to preserve every 

bit of the gathered and processed data, based on subscription models, providing high availability of storage and 

computation at affordable price. Conventional data warehousing systems are based on predetermined analytics 

over the abstracted data and employ cleansing and transforming into another database known as data marts ; 

which are periodically updated with the similar type of rolled-up data. However, big data systems work on non-

predetermined analytics; hence, no need of data cleansing and transformations procedures. 

 

Big Data Applications 

 

As business domains are growing, there is a need to converge a new economic system redefiningthe 

relationships among producers, distributors, and consumers of goods and services. Obviously, it is not feasible 

to depend on experience or pure intuition always; however, it is also essential to use critically important data 

sources for decision-making. The National Institute of Standards and Technology Big Data Public Working 

Group described a survey of big data architectures and framework from the industry [7]. The several areas of big  

data computing are described in the succeeding texts. 

 Scientific explorations : The data collected from various sensors are analyzed to extract the useful 

informat ion for societal benefits. For example, physics and astronomical experiments – a large number of 

scientists collaborating for designing, operating, and analyzing the products of sensor networks and detectors 

for scientific studies. Earth observation systems – information gathering and analytical approaches about 

earth’s physical, chemical, and biological systems via remote-sensing technologies – to improve social and 

economic well-being and its applications for weather forecasting, monitoring, and responding to natural 

disasters, climate change predictions, and so on. 

 Health care : Healthcare organizat ions would like to predict the locations from where the diseases are 

spreading so as to prevent further spreading [8]. However, to predict exact ly the origin of the disease would 

not be possible, until there is statistical data from several locations. In2009, when a new flu virus similar to 

H1N1 was spreading, Google has predicted this and published a paper in the scientific journal Nature [9], by 

looking at what people were searching for, on the Internet. 
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 Governance : Surveillance system analyzing and classifying streaming acoustic signals, transportation 

departments using real-time traffic data to predict traffic patterns, and update publictransportation schedules. 

Security departments analyzing images from aerial cameras, news feeds, and social networks or items of 

interest. Social program agencies gain a clearer understanding of beneficiaries and proper payments. Tax 

agencies identifying fraudsters and support investigation by analyzing complex identity information and tax 

returns. Sensor applications such stream air, water, and temperature data to support cleanup, fire prevention, 

and other programs. 

 Financial and business analytics : Retaining customers and satisfying consumer expectations are among the 

most serious challenges facing financial institutions. Sentiment analysis and predictiveanalysis would play a 

key role in several fields like travel industry – for optimal cost estimations and retail industry – products 

targeted for potential customers. Forecast analysis – estimating the best price estimations and so on. 

 Web analytics : Several websites are experiencing millions of unique visitors per day, in turn creating a large 

range of content. Increasingly, companies want to be able to mine this data to understand limitations of their 

sites, improve response time, offer more targeted ads, and so on. This requires tools to perform complicated 

analytics on data that far exceed the memory of a single machine or even in cluster of machines. 

 
The big data challenges 

Performing computation on big data is quite a big challenge. To work with huge volume of data that easily 

surpass several terabytes in size, requires distributing parts of data to several systems to handle in parallel. By  

doing it, the probability of failu re rises . In a single single-system, failure is not something that usually program 

designers explicitly worry about [10].  However, in a distributed n scenario, partial failu res are expected and 

common, but, if the rest of the distributed system is fine, it should be able to recover from the co mponent failure 

or transient error condition and continue to make progress.  Providing such resilience is a major software 

engineering challenge and concern [10].In addit ion, to these sorts of bugs and challenges, there is also the fact 

that the computer hardware has finite resources available. The major hardware restrictions include; Processor 

time, Memory, Hard drive space and Network bandwidth. 

 

Individual systems usually have few gigabytes of memory. If the input dataset is set several terabytes, then 

this would require a thousand or more machines to hold it in RAM and even then, no single machine would be 

able to process or address all of the data. Hard drives are a lot bigger than RAM, and a single machine can 

currently hold multip le terabytes of information on its hard drives. But generated data of a large large-scale 

computation can easily require more space than what original data had occupied. During this, some of the 

storage devices, employed by the system may get full, and the distributed system will have to send the data to 

other node, to store the overflow. Finally, bandwidth is a limited resource. While a pack of nodes directly 

connected by a gigabit Ethernet generally experience high throughput between them, if all transmit mult i-

gigabyte, they would saturate the switch's bandwidth. In addition to that if the systems were spread across 

multip le racks, the bandwidth for the data transfer would be more d iminished[10]. 

 

To achieve a successful large large-scale distributed system, the mentioned resourcesmust be efficiently  

managed. Furthermore, it must allocate some of these resourcestoward maintaining the system as a whole, while 

devoting as much time as possible tothe actual core computation [10].Synchronization between multip le systems 

remains the biggest challenge in distributedsystem design. If nodes in a distributed system can explicitly  

communicate with one another, then application designers must be cognizant of risks associatedwith such 

communicat ion patterns. Finally, the ability to continue computation in the heface of failu res becomes more 

challenging [1]. 

 

II. STATE OF THE ART DEVELOPMENTS  

 

This section will begin to explain the up-to-date solutions for the big data processing challenges. It will 

focus on what is Apache’s Hadoop framework and how it works, also discuss other Apache alternative 

frameworks, namely Spark and Storm. 

 
APACHE HADOOP 

 

Through time, size of informat ion kept  rising and that immense growth generated to change the way 

this informat ion is processed and managed, as individual processors clock speed evolution slowed, systems 

evolved to a mult i multi-processor or oriented architecture. However there are scenario scenarios, where the data 

size is too big to be analyzed in acceptable time by a single system, and in this cases where the MapReeduce  and 

a distributed file system are able to shine. Apache Hadoop is a distributed processing infrastructure. It can be 

used on a single machine, but to take advantage and achieve its full potential, it must , scale it to hundreds or 
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thousands of computers, each with several processor cores processor It’s also designed to efficiently distribute 

large amounts of work and data across mult iple systems.  It has main ly comprising of two major components, 

namely Hadoop Distributed File System( HDFS) and MapReduce.  HDFS is  used to manage data storage, 

whereas MapReduce is used as programming paradigm.  

 

Hadoop Distributed File System (HDFS) 

 

Hadoop Distributed File System (HDFS) is a system inspired by Google’s Google File System [11] 

stores large files in multip le machines in a shared-nothing mechanism. It is developed to handle big data on 

clusters of commodity hardware. Apache Hadoop is an open-source implementation of Google’s MapReduce 

[12] and acquired by many large organizations  like Google [11], Facebook [13], Yahoo [14], Oracle [15], and 

Microsoft [16] for enabling their applications on cloud. It provides an abstract and easy programming model to 

write parallel p rograms instead of worrying about the data distribution, parallelizat ion, fault tolerance, and 

computations. MapReduce is a parallel data-processing framework on top of HDFS (provides high throughput 

and access).Hadoop has the best fault-tolerant, high-throughput, and server-failure survival mechanisms [17]. 

 

Like Google File System, Hadoop also maintain rep licas of its data splits across different machinesto 

provide data locality and reliab ility. Defau lt chunk size of HDFS is 64 MB, and these chunks are once write -

multip le-read chunks. Hadoop’s master-slave mechanism is shown in Fig 1. It consists of NameNode and 

DataNodes. A NameNode also called MasterNode, is responsible for controlling the whole MapReduce job 

through a JobTracker and controlling tasks in a job througha TaskTracker(TT) while working as DataNode (e.g., 

single node cluster). A DataNode, also called SlaveNode, consists of DataNode and TT. A 

SecondaryNameNode in large clusters is used to generate snaps of NameNode to avoid loss and works as 

standby NameNode. NameNode stores meta-data about the files/data chunks stored in DataNodes, while 

DataNodes store the actual data chunks (64 MB). By defau lt, each data chunk is replicated by a factor of 3.  

 

Figure 1: HDFS Architecture  

MapReduce 

MapReduce is the heart of Apache Hadoop [18]. It is this programming paradigm that allows for 

massive scalability across hundreds or thousands of servers in a Hadoop cluster. The MapReduce concept is 

fairly simple to understand for those who are familiar with clustered scale-out data processing solutions. For 

people new to this topic, it can be somewhat difficult to grasp, because it’s not typically something people have 

been exposed to previously.The term MapReduce actually refers to two separate and distinct tasks that Hadoop 
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programs perform. The first is the map job, which takes a set of data and converts it into another set of data, 

where individual elements are broken down into tuples (key/value pairs). The reduce job takes the output from a 

map as input and combines those data tuples into a smaller set of tuples. As the sequence of the name 
MapReduce implies, the reduce job is always performed after the map job. 

 

Figure 2: Map Reduce Work Flow 

The following steps ( Fig 2) summarizes the  flow of map reduce algorithm:  

1. The input data can be divided into n number of chunks depending upon the amount of data and processing 

capacity of individual unit.  

2. Next, it is passed to the mapper functions. Please note that all the chunks are processed simultaneously at 

the same time, which embraces the parallel processing of data. 

3. After that, shuffling happens which leads to aggregation of similar patterns. 

4. Finally, reducers combine them all to get a consolidated output as per the logic. 

5. This algorithm embraces scalability as depending on the size of the input da ta, we can keep increasing the 
number of the parallel p rocessing units. 

APACHE SPARK 

Apache Spark[19] is an open source big data processing framework built around speed, ease of use, 

and sophisticated analytics. It was originally developed in 2009 in UC Berkeley’s AMPLab, and open sourced 

in 2010 as an Apache project.Spark has several advantages compared to other big data and MapReduce 

technologies like Hadoop and Storm.First of all, Spark gives us a comprehensive, unified framework to manage 

big data processing requirements with a variety of data sets that are diverse in nature (text data, graph data etc) 

as well as the source of data (batch v. real-time streaming data).Spark enables applications in Hadoop clusters to 

run up to 100 times faster in memory and 10 times faster even when running on disk.Spark facilitate user to 

quickly write applications in Java, Scala, or Python. It comes with a built-in set of over 80 high-level operators. 

And you can use it interactively to query data within the shell.In addition to Map and Reduce operations, it 

supports SQL queries, streaming data, machine learning and graph data processing. Developers can use these 

capabilit ies stand-alone or combine them to run in a single data pipeline use case.In this first installment of 

Apache Spark article series, we'll look at what Spark is, how it compares with a typical MapReduce s olution and 

how it provides a complete suite of tools for big data processing.Spark takes MapReduce to the next level with 

less expensive shuffles in the data processing. With capabilit ies like in -memory data storage and near real-time 

processing, the performance can be several times faster than other big data technologies.Spark also supports lazy 

evaluation of big data queries, which helps with optimization of the steps in data processing workflows. It 

provides a higher level API to improve developer productivity and a consistent architect model for big data 
solutions. 
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Spark holds intermediate results in memory rather than writing them to disk which is very useful especially  

when you need to work on the same dataset multip le times. It’s designed to be an execution engine that works 

both in-memory and on-disk. Spark operators perform external operations when data does not fit in memory. 

Spark can be used for processing datasets that larger than the aggregate memory in a cluster.  Spark attempts to 

store as much as data in memory and then will spill to disk. It  can store part of a data set in memory and the 

remain ing data on the disk. You have to look at your data and use cases to assess the memory requirements. 

With this in-memory data storage, Spark comes with performance advantage. There are many Spark features, 
which include: 

 Supports more than just Map and Reduce functions. 

 Optimizes arbitrary operator graphs. 

 Lazy evaluation of b ig data queries which helps with the optimization of the overall data processin g 

workflow. 

 Provides concise and consistent APIs in Scala, Java and Python. 

 Offers interactive shell for Scala and Python. This is not available in Java yet. 

Spark is written in Scala Programming Language and runs on Java Virtual Machine (JVM) environment.  It 
currently supports the Scala, Java, Python, Clojure and R . 

APACHE STORM 

 

Apache Storm [10] is a distributed real-time big data-processing system. Storm is designed to process 

vast amount of data in a fault-tolerant and horizontal scalable method. It is a streaming data framework that has 

the capability of highest ingestion rates. Though Storm is stateless, it manages distributed environment and 

cluster state via Apache ZooKeeper. It is simple and you can execute all kinds of manipulat ions on real-time 

data in parallel.Apache Storm is continuing to be a leader in real-time data analytics. Storm is easy to setup, 
operate and it guarantees that every message will be processed through the topology at least once. 

 

 

 

 

 

 

Figure 3: Apache Strom Architecture  

 

There are fo llowing two types of nodes services shown in above diagram (Fig. 3) 

1. Nimbus Service on Master Node - Nimbus is a daemon that runs on the master node of Storm cluster. It is 

responsible for distributing the code among the worker nodes, assigning input data sets to machines for 

processing and monitoring fo r failures. Nimbus service is an Apache Thrift service enabling you to submit the 

code in any programming language. This way, you can always utilize the language that you are proficient in, 

without the need of learning a new language to utilize Apache Storm.Nimbus service relies on Apache 

ZooKeeper service to monitor the message processing tasks as all the worker nodes update their tasks status in 

Apache ZooKeeper service. 

2. Supervisor Service on Worker Node - All the workers nodes in Storm cluster run a daemon called 

Supervisor. Supervisor service receives the work assigned to a machine by Nimbus service. Supervisor 

manages worker processes to complete the tasks assigned by Nimbus. Each of these worker processes 

executes a subset of topology that we will talk about next.  

Master Node 
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Slave Nodes 

 
Supervisor-1 

Supervisor-2 
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APACHE FLINK 

Apache Flink[20] is the next generation Big Data tool also known as 4G of Big Data. It is the true stream 

processing framework (doesn’t cut stream into micro-batches). Flink’s kernel (core) is a streaming runtime 

which also provides distributed processing, fault tolerance, etc. Flink processes events at a consistently high 

speed with low latency; it processes the data at lightning fast speed. It is the large scale data processing 

framework which can process data generated at very high velocity. Apache Flink is the powerful open source 
platform which can address following types of requirements efficiently:  

 Batch Processing 

 Interactive processing 

 Real-time stream processing 

 Graph Processing 

 Iterative Processing 

 In-memory processing 

Apache Flink[20] is a streaming data flow engine that provides communication, fault-tolerance, and data-

distribution for distributed computations over data streams. Flink is a top level project of Apache. Flink is a 

scalable data analytics framework that is fully compatib le to Hadoop. Flink can execute both stream processing 

and batch processing easily.Apache Flink was  started under the project called The Stratosphere. In 2008 Volker 

Markl formed the idea for Stratosphere and attracted other co-principal Investigators from HU Berlin, TU 

Berlin, and the Hasso Plattner Institute Potsdam. They jo intly worked  on a vision and had already put the great 

efforts on open source deployment and systems build ing. Later on, several decisive steps had been so that the 

project can be popular in commercia l, research and open source community. A commercial entity named this 

project as Stratosphere. After applying for Apache incubation in April 2014 Flink name was finalized. Flink is a 

German word which means swift or agile. The key vision for Apache Flink is to overcome and reduces the 

complexity that has been faced by other distributed data-driven engines. It is achieved by integrating query 

optimization, concepts from database systems and efficient parallel in -memory and out-of-core algorithms, with 

the MapReduce framework. As Apache Flink is main ly based on the streaming model, Apache Flink iterates 

data by using streaming architecture. The concept of an iterative algorithm is tightly bounded into Flink query 

optimizer. Apache Flink’s pipelined architecture allows processing the streaming data faster with lower latency 
than micro-batch architectures (Spark).  

III. DISCUSS ION 

Flink   is one of the newest players in the big data computing framework. Flink is an alternative of Map 

Reduce, it processes data more than 100 times faster than MapReduce. Flink is independent of Hadoop but it 

can use HDFS to read, write, store, and process the data. Flink does not provide its own data storage system. It  

takes data from d istributed storage. Sparkis another newest players in the MapReduce field. Its purpose is to 

make data analytics fast to write, and fast to run. Unlike many MapReduce systems (Hadoop inclusive), Spark 

allows in-memory querying of data (even distributed across machines) rather than using disk I/O. It’s no 

surprise that Spark out-performs Hadoop on many iterative algorithms. Spark is implemented in Scala, a 

functional object-oriented language that runs on top of the JVM. Similar to other languages like Python and 

Ruby, Scala has an interactive prompt that users can use to query big data straightfrom the Scala interpreter, 

making it a good choice in some scenarios. However, it does not support a distributed file system on its own, it 

depends on Hadoop, if a HDFS is required. The Storm framework is referred as bein g the Hadoop of Real-t ime 

Processing. Hadoop is a batch-processing system, this means, give it a big set of static data and it will do 

something with it. Storm is real-t ime, it processes data in parallel as it streams. Therefore, Storm is more a 

complement to Hadoop rather than a real replacement, as Storm fails when it comes to process large persistent 

data, as its focus is to be able to process a large number of streams of data (in real time computation), while 

Hadoop focus is on large amount of persistent data (batch processing). 

 

Framework Features and Summary 

 

This sub-section summarizes the main features and benefits of each of the evaluated frameworks. The 

similarities and differences of the discussed framework are presented below[21]: 

 

Similarities 

The similarities among Hadoop, Spark, Flink and Storm are mentioned below:  
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o Hadoop, Spark, Flink and Storm are open source processing frameworks. 

o Hadoop, Spark, Flink and Stormcan be used for real t ime BI and big data analytics. 

o Hadoop, Spark, Flink and Storm provide fau lt tolerance and scalability.  

o Hadoop, Spark, Flink and Storm are preferred choice of frameworks amongst developers for big data 

applications (based on the requirements) because of their simple implementation methodology. 

o Hadoop, Spark, Flink and Storm are implemented in JVM based programming languages - Java, Scala and 
Clojure respectively. 

 Differences 

The differences between the four platforms are presented with respected to data processing models, 

performance and ease of deployment. 

Data Processing Models  

Hadoop: Hadoop MapReduce is best suited for batch processing. For big data applications that require 

real time options, organizations must use other open source platform like Impala or Spark. Apache Spark 

is designed to do more than plain data processing as it can make use of existing machine learn ing libraries 

and process graphs. Thanks to the high performance of Apache Spark, it can be used for both batch 

processing and real time processing. Spark provides an opportunity to use a single platform for 

everything rather than splitting the tasks on different open source platforms -avoiding the overhead of 

learning and maintaining different platfo rms. 

Strom:Micro-batching is a special kind of batch processing wherein the batch size is orders smaller. 

Windowing becomes easy with micro-batching as it offer stateful computation of data. Storm is a 

complete stream processing engine that supports micro-batching whereas Spark is a batch processing 

engine that micro-batches but does not render support for streaming in the strictest sense. 

Flink: Apache Flink provides a single runtime for the streaming and batch processing 

Performance  

Spark processes in-memory data whereas Hadoop MapReduce persists back to the disk after a map  

action or a reduce action thereby Hadoop MapReduce lags behind when compared to Spark in this aspect. 

Spark requires huge memory just like any other database - as it loads the process into the memory and 

stores it for cach ing. However, if Spark runs on top of  YARN with various other resources demanding 

services, then there is a possibility of performance deprivation for Spark. In the case of Hadoop 

MapReduce, the process is killed as soon as the job is completed , that make it possible to run along with 

other resource demanding services with just a slight difference in performance.  

Similarly, comparing Spark and Storm both provide fault tolerance and scalability but differ in the 

processing model. Spark streams events in small batches that come in short time window before it  

processes them whereas Storm processes the events one at a time. Thus, Spark has a latency of few 

seconds whereas Storm processes an event with just millisecond latency.Spark has good performance on 

dedicated clusters when the entire data can fit in the memory whereas Hadoop can perform well along 

other services when data does not fit in memory. Storm is a good option when an application needs sub 

second latency without data loss whereas Spark can be used in such computations where the event is just 

processed once.Performance of Apache Flink is excellent as compared to any other data processing 

system. Apache Flink uses native closed loop iteration operators which make machine learning and graph 

processing more faster when we compare Hadoop vs Spark vs Flink. 

Ease of Development 

Hadoop MapReduce is written in Java. Apache Pig makes it easier to develop in Hadoop, although 

some time needs to be spent on understand and learning the Syntax of Apache Pig. To add the SQL 

compatibility to Hadoop, developers can use Hive on top of Hadoop. In fact, there are several data 

integration services and tools that allow developers to run MapReduce jobs without any programming. 

Hadoop MapReduce lacks the interactive mode but tools like Impala provide a complete package of 
querying to Hadoop. 
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Spark uses Scala tuples and they can only be intensified by nesting the generic types because Scala 

tuples are difficult to be implemented in Java. However, this does not require compromising on the 

compile time type safety checks. Spark is easier to program as it has interactive mode which is not 

possible directly with Hadoop. However many tools are coming up to make programming with Hadoop 

easier. Also, if the project requires an interactive mode for data exp loration through API calls - then it is 

not supported by Storm. Spark has to be used. 

Storm uses DAG’s which are natural to the processing model. Every node in the directed acyclic graph 

transforms the data in some way and continues the process. The data transfer between the nodes in 

directed acyclic graphs has a natural interface and this happens through Storm tuples. However, this can 

be achieved by compromising at the expense of compile t ime type safety checks. 

Flink iterates data by using its streaming architecture. Flink can be instructed to only process the parts 

of the data that have actually changed, thus significantly increasing the performance of the job. Apache 

Flink comes with an optimizer that is independent with the actual programming interface. The Flink 

optimizer works similarly to a relat ional Database Optimizer but applies these optimizat ions to the Flink 
programs, rather than SQL queries. 

IV. CONCLUS ION 

Hadoop, Spark and Storm have their own benefits, however there are certain aspects like Cost of 

Development, Performance, and Data Processing models, Message Delivery Guarantees, Latency, Fault 

Tolerance and Scalability which play a vital role in deciding which one is better for a particular big data 

application. Hadoop, Spark or Storm can each be a great choice for big data analytics stack and choosing the 

ideal solution is merely a matter of considering the above mentioned similarit ies and differences. The beauty of 

open source tools is that - based on the application requirements, workloads and infrastructure, the ideal choice 

could be a combination of Spark and Storm together with other open source tools like Apache Hadoop, Apache 

Kafka, Apache Flume, etc. Based on this research, I understood that the comparison must be made based on use 

cases oriented view, as the frameworks end up being more complementary than competitive among each other. 

One thing was made clear, in all references, it does not matter if you choose Hadoop, Spark, Flink or Storm, 

having the HDFS is an advantage, because it solves many of storage problems associated with big data 

computing.  

Regardless of what open source tools an organization chooses, either it is Hadoop, Spark , Storm, Flink or 

a combination of either of the four these tools have changed real time business intelligence, as all midsize to 
large organizations are embracing their advantages. 
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