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Abstract— In the present paper, an investigation is devoted to study the induced temperature and stress fields in 

an elastic half space under the purview of generalized thermoelectricity theory of field equations. The half space 

continuum is considered to be made of an isotropic homogeneous thermoplastic material, the bounding plane 

surface being subjected to a Non-Gaussian laser pulse. First we employ the Laplace transform to remove the time 

dependency of the governing equations. Further, we use the finite element method with respect to space 

coordinate to obtain the numerical solution in Laplace domain. Finally, a numerical method to invert the Laplace 

transform is used to obtain the numerical solution in space and time domain. The discussion of results are shown 

by plotting the different graphs. 

 

Index Terms— Thermoelasticity, Laser heating, Finite Element Method, Half Space. 

__________________________________________________________________________________________ 

I. INTRODUCTION  

Although the classical Fourier heat conduction equation has been applied in the majority of practical engineering 

applications, there is an important body of problems that requires due consideration of thermomechanical 

coupling. It is appropriate in these cases to apply the generalized theory of thermoelasticity.  

 

The absence of any elasticity term in the heat conduction equation for uncoupled thermoelasticity appears to be 

unrealistic, since due to the mechanical loading of an elastic body, the strain so produced causes variation in the 

temperature field. Moreover, the parabolic type of the heat conduction equation results in an infinite velocity of 

thermal wave propagation, which also contradicts the actual physical phenomena. Introducing the strain-rate 

term in the uncoupled heat conduction equation, Biot extended the analysis to incorporate coupled 

thermoelasticity [1]. In this way, although the first shortcoming was over, there remained the parabolic type 

partial differential equation of heat conduction, which leads to the paradox of infinite velocity of the thermal 

wave. To overcome  this paradox,  generalized thermoelasticity theory was developed subsequently. Due to the 

advancement of pulsed lasers, fast burst nuclear reactors and particle accelerators, etc. which can supply heat 

pulses with a very fast time-rise [2,3], generalized thermoelasticity theory is receiving serious attention. The 

development of the second sound effect has been nicely reviewed by Chandrasekharaiah [4]. At present, mainly 

two different models of generalized thermoelasticity are being extensively used- one proposed by Lord and 

Shulman [5] and the other proposed by Green and Lindsay [6]. LS (Lord and Shulman) theory introduces one 

relaxation time and according to this theory, only Fourier’s heat conduction equation is modified. While GL 

(Green and Lindsay) theory introduces two relaxation times and both the energy equation and the equation of 

motion are modified.  

 

In the modern physics of laser–matter interactions, different classes of materials likes metals, semiconductors, 

and dielectrics demonstrate dissimilar character under pulsed laser action [6, 7]. Moreover, the different 

representatives of the same material class can often behaves differently to the laser irradiation. Among metals 

there are ductile and brittle ones with the possibility of brittle to ductile transitions [8]. Thus, to achieve high-

precision micro-processing, the process strategies have to be developed. Taking into account specific material 

properties, among which the brittleness and plasticity are of supreme importance [6]. 

 

The basic importance of plasticity has been introduced by fs laser induced sub-wavelength structuring of thin 

gold films with formation of micro-bumps and Nano jets [9, 10]. However, there are only a few papers about 

concerning the theoretical studies of thermal stresses developed in solids by pulsed laser irradiation (see [11, 12], 

but post-irradiation stresses can result in lattice deformations and generation of unusual structures such as those 

obtained in [9, 10]. 

 

In the present paper, an investigation is devoted to study the induced temperature and stress fields in an elastic 

half space under the purview of generalized thermoelasticity theory of field equations. The half space continuum 

is considered to be made of an isotropic homogeneous thermoelastic material, the bounding plane surface being 

subjected to a Non-Gaussian laser pulse. First we employ the Laplace transform to remove the time dependency 
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of the governing equations. Further, we use the finite element method with respect to space coordinate to obtain 

the numerical solution in Laplace domain. Finally, a numerical method to invert the Laplace transform is used to 

obtain the numerical solution in space and time domain. The discussion of results are shown by plotting the 

different graphs. 

II.  Problem Formulation  

 

Equation of motion: 

 

𝜎𝑖𝑗 =
𝜕2𝑢𝑖

𝜕𝑡2                                                                            (1) 

 

Stress-strain-temperature relation: 

 

𝜎𝑖𝑗 = 2𝜇𝑒𝑖𝑗 + (𝜆𝑒𝑘𝑘 − 𝛾𝜃)𝛿𝑖𝑗                                                            (2) 

 

The equation of heat conduction: 

(𝐾𝜃, i ), i = (1+𝜏
𝜕

𝜕𝑡
) [𝜌𝑐𝐸

𝜕𝜃

𝜕𝑡
+ 𝑇0𝛾

𝜕𝑒

𝜕𝑡
− 𝜌𝑅]                                         (3) 

 

The strain-displacement relation: 

2𝑒𝑖𝑗  = (𝑢𝑖,𝑗+𝑢𝑗,𝑖)                                                   (4) 

 

From the Eqns.  (1) and (2), we  get 

[𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) + 𝜆𝑢𝑘𝑘𝛿𝑖𝑗 − 𝛾𝜃𝛿𝑖𝑗],𝑗=𝜌
𝜕2𝑢𝑖

𝜕𝑡2                                (5) 

ℎ𝑒𝑟𝑒 𝑅 =
𝑅𝑎𝐿0

𝛿𝑡𝑝
2

 𝑡𝑒−(
ℎ
2𝛿

+
𝑥
𝛿
) 𝑒

−
𝑡
𝑡𝑝 

 

We asume that laser heat emits the heat only in the direction of x coordinate. Therefore Eqn.  (5) Reduces to the following 

form: 

(𝝀 + 2𝜇) 
𝜕2𝑢

𝜕𝑥2 +
𝜕𝑢

𝜕𝑥
 
𝜕(𝝀+𝟐𝝁)

𝜕𝑥
− 𝛾

𝜕𝜃

𝜕𝑟
− 𝜃

𝜕𝛾

𝜕𝑟
= 𝜌

𝜕2𝑢

𝜕𝑡2                                 (6) 

As for the same reason, the Eqn. (3) reduces to the following form: 

𝐾
𝜕2𝜃

𝜕𝑥2 +
𝜕𝐾

𝜕𝑥

𝜕𝜃

𝜕𝑥
= (1 +

𝜕

𝜕𝑡
 ) [ 𝜌𝑐𝐸

𝜕𝜃

𝜕𝑡
+ 𝑇0𝛾

𝜕2𝑢

𝜕𝑡𝜕𝑥
− 𝜌

𝑅𝑎𝐿0

𝛿𝑡𝑝
2  𝑡𝑒−(

ℎ

2𝛿
+

𝑥

𝛿
) 𝑒

−
𝑡

𝑡𝑝 ]                            (7) 

 

Similarly, Eqn. (2) takes the following form: 

𝜎𝑥𝑥 = (𝜆 + 2𝜇) 
𝜕𝑢

𝜕𝑥
− 𝛾𝜃                                       (8) 

For the computational simplicity of the problem, we introduce the following non-dimensional variables and notation 

 

(𝑥′, 𝑢′, ℎ′. 𝛿′) =  𝑐0𝜂0(𝑥, 𝑢, ℎ, 𝛿), 𝜃′ = 
𝛾

(𝜆𝑚+2𝜇𝑚)
𝜃, (𝑡′, 𝑡𝑝

′ , 𝜏′) = 𝑐0
2𝜂0(𝑡, 𝑡𝑝, 𝜏),   

𝜎𝑥𝑥
′ = 

𝜎𝑥𝑥

(𝜆𝑚+2𝜇𝑚)
 , 𝑐0

2 = 
(𝜆𝑚+2𝜇𝑚)

𝜌𝑚
 , 𝜂0 = 

𝜌𝑚𝑐𝑚

𝐾𝑚
 , 

 

Using the above notations and variables into the Eqns. (6)-(8) and after droping the primes, we obtain, respectively: 
(𝜆+2𝜇)

(𝜆𝑚+2𝜇𝑚)

𝜕2𝜇

𝜕𝑥2 +
𝜕𝑢

𝜕𝑥

𝜕(𝜆+2𝜇)

𝜕𝑥
−

1

𝛾𝑚
[𝛾

𝜕𝜃

𝜕𝑟
+ 𝜃

𝜕𝛾

𝜕𝑟
 ] =  

𝜌𝒄𝟎
𝟐

(𝜆𝑚+2𝜇𝑚)
 
𝜕2𝑢

𝜕𝑡2                         (9) 

𝐾

𝐾𝑚
 
𝜕2𝜃

𝜕𝑥2 +
1

𝐾𝑚
 
𝜕𝐾

𝜕𝑥

𝜕𝜃

𝜕𝑥
= (1+𝜏

𝜕

𝜕𝑡
) [

𝜌𝑐𝐸

𝜌𝑚𝑐𝐸𝑚

𝜕𝜃

𝜕𝑡
+

∈1𝛾

𝛾𝑚

𝜕2𝑢

𝜕𝑡𝜕𝑥
−

∈2𝜌

𝜌𝑚
 𝑡𝑒− 

𝑥

𝛿 𝑒
− 

𝑡

𝑡𝑝]                       (10) 

𝜎𝑥𝑥 = 
(𝜆+2𝜇)

(𝜆𝑚+2𝜇𝑚)
 
𝜕𝑢

𝜕𝑥
−

𝛾

𝛾𝑚
𝜃                                                                                         (11) 

∈1=
𝑇0𝛽𝑚

2

𝜌𝑚𝑐𝑚(𝜆𝑚+2𝜇𝑚)
, ∈2=

𝑅0𝐿0𝛾𝑚

𝛿𝑝
2𝐾𝑚𝑐0

 𝑒− 
𝑥
2𝛿 𝑎𝑛𝑑 

𝜌𝑐0
2

(𝜆𝑚+2𝜇𝑚)
=

𝜌

𝜌𝑚

 

After applying the Laplace transform to Eqns. (9)-(11), we have the following equations: 
(𝝀+𝟐𝝁)

(𝝀𝒎+𝟐𝝁𝒎)
 
𝜕2𝑢

𝜕𝑥2 +
𝜕𝑢

𝜕𝑥
 
𝜕(𝜆+2𝜇)

𝜕𝑥
−

1

𝛾𝑚
(𝛾

𝜕𝜃̅

𝜕𝑥
+ 𝜃̅

𝜕𝛾

𝜕𝑥
) =

𝜌𝑠2𝑢

𝜌𝑚
                                    (12) 

[
𝐾

𝐾𝑚

𝜕2𝜃

𝜕𝑥2 +
1

𝐾𝑚

𝜕𝐾

𝜕𝑥

𝜕𝜃

𝜕𝑥
] = (1 + 𝜏𝑠) [

𝜌𝑐𝐸𝑠

𝜌𝑚𝑐𝑚𝐸𝑚
𝜃 +

∈1𝛾𝑠

𝛾𝑚

𝜕𝑢

𝜕𝑥
−

∈2𝜌

𝜌𝑚

𝑡𝑝
2

(1+𝑡𝑝𝑠)
2 𝑒

−𝑥

𝛿 ]            (13) 

𝜎𝑥𝑥̅̅ ̅̅ =
(𝝀+𝟐𝝁)

(𝝀𝒎+𝟐𝝁𝒎)
 
𝜕𝑢̅

𝜕𝑥
−

𝜸

𝜸𝒎
 𝜃̅                                                                                (14) 
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Now we apply the Galerkin finite element method to the Eqns. (12)-(13). Therefore, the geometry of the one dimensional 

medium is divided into M discrete elements of equal length, h along the increasing x direction. Considering the base element 

(el), l = 1, 2, ...M , the displacement and temperature fields over the base element are approximated as 

𝒖̅𝒆𝒊 = ∑ 𝑵𝒊
𝒆𝒊𝒅

𝒊=𝟏  𝑼𝒊
̅̅ ̅𝒆𝒊  and 𝜽̅𝒆𝒊 = ∑ 𝑵𝒊

𝒆𝒊𝒅
𝒊=𝟏  𝜽𝒊̅

𝒆𝒊
        (15) 

 

 

Where the 𝑁𝑖
𝑒𝑖 denotes the shape function that approximates the displacement and temperature fields in the base element and 𝑑 

is the number of nodes in the base element. 𝑼𝒊
̅̅ ̅𝒆𝒊  and 𝜽𝒊̅

𝒆𝒊
 (𝒊 = 𝟏, 𝟐, … , 𝒅) are therefore the nodal values of displacement and 

temperature, respectively. The arrangement of elements are shown in Fig.(𝑖𝑖). Therefore after employing the finite element 

method to Eqns. (12) − (13), we obtain 

 

∫ [
(𝜆+2𝜇)

(𝜆𝑚+2𝜇𝑚)

𝜕2𝑢

𝜕𝑥2 +
𝜕𝑢

𝜕𝑥

𝜕(𝜆+2𝜇)

𝜕𝑥
−

1

𝛾𝑚
(𝛾

𝜕𝜃

𝜕𝑥
+ 𝜃̅

𝜕𝛾

𝜕𝑥
) −

𝜌𝑠2

𝜌𝑚
 𝑢̅] 𝑁𝑖

𝑒𝑙  𝑑𝑉𝑒𝑙
= 0

𝑉𝑒𝑙
          (16) 

∫ [
𝐾

𝐾𝑚
 
𝜕2𝜃

𝜕𝑥2 +
1

𝐾𝑀

𝜕𝐾

𝜕𝑥
 
𝜕𝜃

𝜕𝑥
− (1 + 𝜏 𝑠) (

𝜌𝑐𝐸𝑠

𝜌𝑚𝑐𝐸𝑚
 𝜃̅ +

𝜖1𝛾𝑠

𝛾𝑚
  

𝜕𝑢

𝜕𝑥
−

𝜖2𝜌

𝜌𝑚

𝑡𝑝
2

(1+𝑡𝑝𝑠)
2 𝑒−

𝑥

𝛿)] 𝑁𝑖
𝑒𝑙  𝑑𝑉𝑒𝑙

= 0
𝑉𝑒𝑙

     (17) 

Since for one dimensional problem, 𝑑𝑉𝑒𝑙
= 𝑑𝑥 and integration limit varies from 𝑥 = 𝑥𝑙  𝑡𝑜 𝑥𝑙+1. Hence we have from the 

above equations 

∫ [
(𝜆+2𝜇)

(𝜆𝑚+2𝜇𝑚)

𝜕2𝑢

𝜕𝑥2 +
𝜕𝑢

𝜕𝑥

𝜕(𝜆+2𝜇)

𝜕𝑥
−

1

𝛾𝑚
(𝛾

𝜕𝜃

𝜕𝑥
+ 𝜃̅

𝜕𝛾

𝜕𝑥
) −

𝜌𝑠2

𝜌𝑚
 𝑢̅] 𝑁𝑖

𝑒𝑙  𝑑𝑥 = 0
𝑥𝑙+1

𝑥𝑙
     (18) 

∫ [
𝐾

𝐾𝑚
 
𝜕2𝜃

𝜕𝑥2 +
1

𝐾𝑀

𝜕𝐾

𝜕𝑥
 
𝜕𝜃

𝜕𝑥
− (1 + 𝜏 𝑠) (

𝜌𝑐𝐸𝑠

𝜌𝑚𝑐𝐸𝑚
 𝜃̅ +

𝜖1𝛾𝑠

𝛾𝑚
  

𝜕𝑢

𝜕𝑥
−

𝜖2𝜌

𝜌𝑚

𝑡𝑝
2

(1+𝑡𝑝𝑠)
2 𝑒−

𝑥

𝛿)] 𝑁𝑖
𝑒𝑙  𝑑𝑥 = 0

𝑥𝑙+1

𝑥𝑙
       (19) 

After applying week formulation to the eqns. (18) − (19) to reduce second derivative and using Eqn. 15, we obtain the 

following form of above Eqns. 

 

∫ [
(𝜆+2𝜇)

(𝜆𝑚+2𝜇𝑚)

𝜕𝑁
𝑖

𝑒𝑙

𝜕𝑥

𝜕𝑢

𝜕𝑥
+

1

𝛾𝑚
(𝛾

𝜕𝜃

𝜕𝑥
+ 𝜃̅

𝜕𝛾

𝜕𝑥
) 𝑁𝑖

𝑒𝑙 +
𝜌𝑠2

𝜌𝑚
 𝑁𝑖

𝑒𝑖𝑢̅]  𝑑𝑥 = [
(𝜆+2𝜇)

(𝜆𝑚+2𝜇𝑚)
𝑁𝑖

𝑒𝑖 𝜕𝑢

𝜕𝑥
]
𝑥=𝑥𝑙

𝑥=𝑥𝑙+1

   
𝑥𝑙+1

𝑥𝑙
   (20) 

 

∫ [
𝐾

𝐾𝑚
 
𝜕𝑁

𝑖

𝑒𝑖

𝜕𝑥

𝜕𝜃

𝜕𝑥
+ 𝑠(1 + 𝜏 𝑠) (

𝜌𝑐𝐸𝑠

𝜌𝑚𝑐𝐸𝑚
 𝑁𝑖

𝑒𝑖  𝜃̅ +
𝜖1𝛾

𝛾𝑚
𝑁𝑖

𝑒𝑖   
𝜕𝑢

𝜕𝑥
)] 𝑑𝑥 = 

𝑥𝑙+1

𝑥𝑙
[

𝐾

𝐾𝑚
 𝑁𝑖

𝑒𝑖 𝜕𝜃

𝜕𝑥
 ]

𝑥=𝑥𝑙

𝑥=𝑥𝑙+1

+ 𝑚(𝑠) ∫
𝜌

𝜌𝑚
 𝑁𝑖

𝑒𝑖𝑥𝑙+𝑖

𝑥𝑙
𝑒−

𝑥

𝛿 𝑑𝑥  

       (21) 

Where 𝑚(𝑠) =
(1+𝜏𝑠)𝜖2𝑡𝑝

2

(1+𝑡𝑝𝑠)
2  

Putting the approximation of temperature and displacement for nodes of the base element (𝑒𝑙) from Eqn. (15)into Eqns. 

(20) − (21) and we obtain the system of linear algebraic equations in unknown nodal values  𝑈𝑒𝑙  and 𝜃̅𝑒𝑙 as 

[
[𝐴𝑒𝑙] [𝐵𝑒𝑙]

[𝐶𝑒𝑙] [𝐷𝑒𝑙]
] [

[𝑈𝑒𝑙]

[𝜃̅𝑒𝑙]
] = [ 

[𝐹𝑒𝑙]

[𝐺𝑒𝑙]
 ]            (22) 

Where the sub-matrices [𝐴𝑒𝑙], [𝐵𝑒𝑙], [𝐶𝑒𝑙], [𝐷𝑒𝑙], of order (𝑑 × 𝑑) and [𝐹𝑒𝑙], [𝐺𝑒𝑙], of order (𝑑 × 1), defined for the base 

element (𝑒𝑙) are obtained as follows: 

𝐴𝑖𝑗
𝑒𝑙 = ∫ [

(𝜆+2𝜇)

(𝜆𝑚+2𝜇𝑚)

𝜕𝑁
𝑖

𝑒𝑙

𝜕𝑥

𝜕𝑁
𝑗

𝑒𝑙

𝜕𝑥
+

𝜌𝑠2

𝜌𝑚
 𝑁𝑖

𝑒𝑙𝑁𝑗
𝑒𝑙]  𝑑𝑥

𝑥𝑙+1

𝑥𝑙
        (23) 

 

𝐵𝑖𝑗
𝑒𝑙 = ∫

1

𝛽𝑚
[𝛽

𝜕𝑁
𝑗

𝑒𝑙

𝜕𝑥
+

𝜕𝛽

𝜕𝑥
 𝑁𝑗

𝑒𝑙]  𝑑𝑥
𝑥𝑙+1

𝑥𝑙
         (24) 

 

𝐷𝑖𝑗
𝑒𝑙 = ∫ [

𝐾

𝐾𝑚
 
𝜕𝑁

𝑖

𝑒𝑙

𝜕𝜉

𝜕𝑁
𝑗

𝑒𝑙

𝜕𝜉
+ 𝑠(1 + 𝜏 𝑠) ( 

𝜌𝑐𝐸𝑠

𝜌𝑚𝑐𝐸𝑚
 𝑁𝑖

𝑒𝑙  𝑁𝑗
𝑒𝑙)] 𝑑𝑥

𝑥𝑙+1

𝑥𝑙
       (25) 

𝐹𝑖
𝑒𝑙 = [

(𝜆+2𝜇)

(𝜆𝑚+2𝜇𝑚)
 𝑁𝑖

𝑒𝑙 𝜕𝑢𝑒𝑙

𝜕𝜉
]
𝑥𝑙

𝑥𝑙+1

          (26) 

𝐺𝑖
𝑒𝑙 = [

𝐾

𝐾𝑚
 𝑁𝑖

𝑒𝑙 𝜕𝜃

𝜕𝑥
]
𝑥𝑙

𝑥𝑙+1
+ 𝑚(𝑠) ∫

𝜌

𝜌𝑚
𝑁𝑖

𝑒𝑙𝑒−
𝑥

𝛿
𝑥𝑙+1

𝑥𝑙
𝑑𝑥        (27) 

Where, 𝑖, 𝑗 = 1,2, … , 𝑑. 

After assembling the element matrices given in the Eqn. (22) for all the elements, we get a system of 𝑑𝑀 +  𝑑 number of 

linear algebraic equations in unknown nodal values of displacement and temperature. While assembling, we interchange the 

rows and columns of element matrix so that the terms in the right hand sides of the equations (26) and (27) canceled out by 

each other between any two adjacent elements, except the first node of the first element and last node of the last element. 

Further in-canceled terms of the right side of Eqns. (26) and (27) are known and related to the inner and outer boundary 

conditions as given by the Eqn. (22). 
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After using Eqns. (17) and (22) we get, 

𝜃̅1
𝑒1 =

𝜃∗

𝑠
, −𝑎(𝜆𝑐 + 2𝜇𝑐)

𝜕𝑢𝑒𝑙

𝜕𝜉
|1 = 𝜆𝑐  𝑈1

𝑒1 −
𝑎(𝜆𝑚+2𝜇𝑚)𝛽𝑐

𝛽𝑚
 𝜃̅1

𝑒1         (28) 

𝜕𝜃̅𝑒𝑀

𝜕𝜉
|𝑑 = 0, 𝑈𝑑

𝑒𝑀 = 0           (29) 

Further, using Eqn. (22), we obtain 
𝜕𝜃̅𝑒1

𝜕𝜉
|1 = 0, 𝑎𝑛𝑑  

𝜕𝑢𝑒𝑀

𝜕𝜉
|𝑑 = 0          (30) 

 

Therefore, the sub-matrices of the global force matrix [
[𝐹]

[𝐺]
 ] are given by 

[𝐹] =

[
 
 
 
 𝜆𝑐  𝑈1

𝑒1 −
𝑎(𝜆𝑚+2𝜇𝑚)𝛽𝑐

𝛽𝑚
 𝜃̅1

𝑒1

0
⋮
0 ]

 
 
 
 

, and [𝐺] = [

0
0
⋮
0

]        (31) 

Since, in obtained system of algebraic equations, 𝜃̅1
𝑒1  and 𝑢̅𝑑

𝑀 are known to us. Therefore, two rows and two columns 

intersecting the nodal values 𝜃̅1
𝑒1  and 𝑢̅𝑑

𝑀 are deleted from the global stiffness matrix. At the same time in global force matrix 

[
[𝐹]

[𝐺]
], the sub-matrices will turn accordingly. 

 

III. Numerical Results and Discussions: 

 

We discuss in detail, the finite element method for coupled partial differential equations to analyze the effect of  laser heating  on 

the physical quantities, displacement, temperature and stresses for the generalized thermoelasticity proposed by LS theory [5] in 

case of half space which is supposed to be initially at reference temperature 0 293T  K  and subjected to the boundary 

conditions as mentioned above . We solve the system of linear algebraic equations numerically discussed in the previous section 

by using Matlab software.  

For the numerical calculations, we used the following values of constants. 

E =66.2 GPa , α =10.3 × 10−6 𝐾−1 ,  𝑐𝐸=808.3 𝐽𝐾𝑔−1  𝐾−1, ρ  =4410 𝐾𝑔𝐾−1  , K  =18.1 𝐾−1 𝑠−1  , ν  =0.321 . 

The numerical results for displacement (u), temperature (θ) and stress (𝜎𝑥𝑥) due to internal laser heat source are displayed in the 

figures. 1,2,3 respectively. 

Fig.1 shows that that the displacement, u is in agreement with the boundary condition and u tends to zero as x tends to large value. 

Displacement u shows many local maxima and minima within the effective region. 

 Fig.2 shows the variation of temperature, θ vs. space coordinate x. It is evident from the fig.1 that θ starts decreasing 

with x and finally tends to zero as x tends to large value. 

       

The stress 𝜎𝑥𝑥 is shown in the fig.3. It shows that initially stress is compressive in nature and after travelling some distance it 

comes to be tensile. It also is in agreement with the given boundary condition. Stress, 𝜎𝑥𝑥 also tends to zero as x tends to high 

value. 
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