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Abstract - While regular assigning of major structural classes (all-α, all-β, α+ β and α/ β) are actually used by the most 

popular classification systems, we still lack of an in-deep understanding about the underlying structural features, 

particularly, at the level of their residue contacts profiles. Here we describe a study that makes use of Support Vector 

based Machine Learning algorithms (SVM) to see if these categories can be distinguished in this context or not. To achieve 

this goal we have developed different learning models that were trained with 400-dimensional contact frequencies vectors 

sets, previously calculated from a non-redundant sample of 2484 proteins structures. We have built binary and multi-class 

classification models with mean accuracies of 82% and 60%, respectively. Using these models, it has been possible to 

binary classify any two structural classes sharing few mixed secondary structures (such as all-α and all-β proteins) with as 

high as 87% accuracy. This value decreased to 82% if the structural classes share mixed secondary structures to a large 

extension (like α+ β and α/β). These results are consistent with the existence of differentiated contact frequency profiles for 

mainly-alpha and mainly-beta protein classes and suggest that α/β protein class could also have a mild specific signature 

in terms of residue-residue contacts, whereas α+ β class could possibly be discarded with this regard, lacking of specific 

pattern of contact frequencies. This last finding opens the question of whether α+ β class needs to be redefined to improve 

coherence of this protein taxonomy. 
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I. INTRODUCTION  

Grouping proteins in structural classes (typically all-α, all-β,  α+β, and  α/β) is a classical, widespread approach that has been 

largely used in many studies and whose importance in structural chemistry and prediction of proteins is currently considered out 

of doubt [1-2]. It was initially intended for creating a comprehensive taxonomy of proteins on the basis of the assignment of the 

covalent skeleton “3D-signature” of known structures, considered as a whole.  

While its structural basis is obviously clear in terms of secondary structure, the precise borders between being an arbitrary 

oversimplification, aimed to merely create an all-inclusive taxonomy or having real strong correlations with sequence or structural 

features (other than secondary structure) is a more difficult problem to solve.  

At this moment, the reiterative success accomplished by a large variety of predictive methods has leaded to conclude that this 

classification strategy must have strong correlations with sequence features. Structural classes, in fact, have been effectively 

predicted from primary sequences characteristics including amino acid composition [3], dipeptide composition [4], polypeptide 

composition [5], pseudo amino acid composition [6], evolutionary features, PSI-Blast profiles [7] and physicochemical properties 

of amino acids [8]. A few of these predictors are based on classification algorithms and machine learning methods like artificial 

Neural Network  and Recurrence Analysis [9-10], Fuzzy Clustering [11], Support Vector Machine [12], Bayesian Classification 

[13], or Ensemble Classification [14]. 

If the structural classes are also correlated with residue-residue contact frequencies is, however, under discussion. For this 

reason, we have implemented here a new methodological workflow aimed to investigate possible correlations between protein 

classes and this kind of tree-dimensional structure features. To do that, we have obtained 400-features vectors that we have used 

to train an efficient Support Vector based Learning Machine algorithm. With this approach, we have obtained binary and multiple 

learning models whose performances have been evaluated and statistically characterized for the four structural classes (all-α, all-

β, α+β, and  α/β). As we discuss below in detail, we have found a heterogeneous correlation among structural classes and their 

contact frequencies profiles. While all-α, all-β seems to have clear differentiated contact frequency profiles, this feature is less 

evidenced in α/β class and is possibly inexistent in α+β proteins, opening the question of whether α+ β class needs to be redefined 

to improve coherence of this protein taxonomy. 

 

II. MATERIAL AND METHODS 

Datasets Selection 

All the observations included in this study have been made from an initial dataset of non-redundant protein structures 

extracted from the Protein Data Bank (PDB) database by using the advanced query tool provided in the RCSB PDB Web 

Resource page [15]. This initial dataset containing 2484 proteins was selected by running a query with the following restrictions: 

sequence identity less or equal than 30%, protein asymmetry, and proteins solved, exclusively, by X-ray diffractometry with 

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org


© 2017 IJEDR | Volume 5, Issue 1 | ISSN: 2321-9939 

IJEDR1701097 International Journal of Engineering Development and Research (www.ijedr.org) 627 

 

resolutions of 3 A° or better. We equilibrated this initial dataset in terms of structural class composition by an additional 

restriction in terms of the structural class they belong. Finally our, dataset had  592 all-α, 651 all-β, 610 α+ β and 631 α/ β 

structures, respectively. In order to build the learning models, we add a second filter to increase the class homogeneity of the 

resulting subsets. After this step, our subsets were restricted to proteins having 1-100% alpha and 1-10% beta for all-α subsets; 1-

10% alpha and 1-100% beta for all-β subsets and, finally, 15-50% alpha and 15-50% beta for α+ β and α/ β subsets.    

   

Contact Frequencies Calculation 

There are different definitions of contact residues in the literature. Most of authors agree in taking into consideration 1) the 

specific atoms (or any other criteria) to be taken as representatives of the amino acid positions; 2) the maximum value of their 

Euclidean distance (usually in the range of 6 to 12 Armstrong) and 3) their minimal sequence separation in number of residues 

[16-17]. We have consider here that two different amino acid residues are in contact when their Euclidean distance between beta-

carbons (Cβ) (alpha-carbons (Cα) in the case of Glycine) is less than 12.0 A° and have a minimal sequence separation of 6 

residues. These criteria were applied to compute the matrix distance of all-for-all residues in each protein of the sample and 

following calculate the 400-dimensional frequencies vector for each 20x20 “residue type -residue type” number of contacts. The 

same protocol was used to build all the sample subsets (all-α, all-β, α+β, and  α/β). 

 

Machine Learning Methods 

In a preliminary search to define the best methodological approach, we tried different machine learning and classification 

methods. In this previous study (data not shown) we evidenced, for example, that Linear Discriminant Analysis and Random 

Forest performed worse than Support Vector based Machine Learning (SVM), so we decided to implement our workflow around 

this last classification method. SVM are actually considered one of the most successful technologies in matter of classification or 

machine learning problems. It uses multidimensional surfaces to define the relationship between the income set of features and 

the learning model outcomes [18-19] and has been widely used in a large variety of problems with outstanding success. It has 

been used, for example, in many Bioinformatics areas, in recognition of multi-class protein Fold [20], in secondary structure 

prediction [21], in discrimination of trans-membrane proteins [22], etc.  

There are different ways to represent the problems, feed and train the SVM algorithms and finally build the learning models. 

Depending of the algorithm implementation, SVM can, for example, maps the input vectors onto the feature space either linearly 

or non-linearly, use different kernel functions, use different dimension upgrade strategies and fix the discriminate tightness with 

the appropriate combination of parameter C and other similar internal adjustments. This tuning lead the SVM deal with a large 

number of features, mapping the data into high a dimensional space, in order to maximize the margin between the two (binary 

classification) or higher number (multiclass classification) of classes or “labels”. Essentially, the algorithm calculates parallel 

lines to the hyper plane that determines the distance between the dividing line and the closest points in the training set, in order to 

minimize classification errors. To determine these boundaries, certain number of points (“support vectors”) has to be previously 

calculated to look for the best classification “margin”.  

In our study we have used a SVM implementation and a set of evaluation functions encoded in two R packages, named 

Kernelb and caret [23-24]. Both packages were used by a number of R scripts developed for this specific purpose in our 

laboratory. After preliminary tests were we used different parameters combinations and kernel functions. We determined to use 

the linear kernel Vanilladot with all the rest of parameters set to their defect values. Vanilladot, specifically, showed much better 

performance than Gaussian kernel or Polynomial Kernel. 

Once defined this workflow we used it to perform binary classification of six pairs of protein subsets, labeled as all-α versus 

all-β, all-α versus α+ β, α+ β versus all-β, all-α versus α/ β, α/β  versus  all-β and α+ β versus α/β. In this case we feed the SVM 

with data frames composed by N horizontal 401-dimensional feature vectors (one line per protein in the sample) including the 

label column and the 400 absolute contact frequencies calculated for that protein. These data frames were conveniently shuffled 

and divided in the two sets with a ratio of 75% for the training set and 25% for the test set [25]. The model outcomes provide us 

with the confusion matrix, applied to the test set (True-Positives, True-Negatives, False-Positives and False-Negatives). From this 

data it was possible to make the quantitative evaluation and statistical characterization of the model. We included Chi-square [26], 

Accuracy, Sensibility, Specificity, Precision and Recall, using identical definitions as provided by the packages authors [23-24]. 

We have also carried out multi-class classification of the four structural classes with an equivalent workflow and evaluation 

protocol. In this case we labeled the subsets as all-α, all-β, α+ β, α+ β and α/ β. As the outcomes of this kind of multi-class model 

we got the all-against-all class discrimination and, as normally happen, we obtained worse quality predictions when compared 

with the above binary classification schemes. 

 

III. RESULTS AND DISCUSSION 

We have carried out here the systematic study of the residue-residue contact profiles obtained from an initial non-redundant 

sample of 2484 Protein Data Bank (PDB) structures. This sample was considered representative and equilibrated for the four 

structural classes widely described in the literature. From this initial sample we prepared specific subsets to add additional 

homogenization criteria in terms of size, and secondary structure ratios (see details in Materials and Methods section). These 

subsets were used to build SVM-based learning models in terms of binaries and multi-class classifications strategies. The basic 

idea underlying these initial essays was to see if there is any correlation between structural classes and their pattern of contact 

frequencies. For that reason we fed the SVM algorithms with data frames composed by the 20x20 (400-dimensional) features 

vectors coming from the previously calculated distance maps of each protein in the set. Entries in these data sets were shuffled 

and conveniently divided in two subgroups to get the training and test sets. According with the literature, we keep a proportion of 

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org


© 2017 IJEDR | Volume 5, Issue 1 | ISSN: 2321-9939 

IJEDR1701097 International Journal of Engineering Development and Research (www.ijedr.org) 628 

 

75% of training and 25% of test entries. SVM algorithms were then built with the training set and the quality of the resulting 

learning models were evaluated and statistically characterized with the test set (not used to obtain the models). 

As an example of the results obtained with this protocol, Table 1 show the cross table of the binary classification achieved for 

six structural label pairs: all-α versus all-β; α+β versus all-β; α/β versus all-β; α/β 

versus α+β; all-α versus α+β and all-α versus α/β. This table includes the detailed information about the so called confusion 

matrix (true-positives, true-negatives, false-positives and false-negatives) as well as additional information about fraction of each 

matrix category respect total observed and predicted labels and their respective chi-square contribution.  

These data were then used to evaluate the statistical quality of each model prediction in terms of accuracy, sensitivity, 

specificity and precision for all the previously calculated binary models (Table 2). In general terms, our learning models reached 

good performances, showing a fair to rather good discrimination capacity in all cases (75% to near 90% in terms of accuracy). 

Our results clearly indicate that the classification performance achieved when comparing non-mixed secondary structures (all-α 

versus all-β) is very good, with accuracy, specificity and precision near or around 90%. Binary classification of all-β versus α/ β 

also got similar good predictive quality. The lowest performance was achieved between α+ β and all-β, with still a 75% of 

accuracy. The rest of binary labels performed with intermediate predictive quality (Table 2).  

When using multi-class classifications strategies, the predictive performances of support vector based learning models drop 

remarkably to a range of accuracy around 60% and concomitantly low levels of precision (Table 3). Even under these conditions, 

specificity was rather high in all structural classes (76% to 94%). Again all-α and all-β proteins showed the highest values (88% 

and 94%, respectively) which means that these groups can be discarded very effectively (good identification of true-negative 

respect all labeled as negatives) but are accepted with less performance (low sensibility or, in other words, less efficient 

identification of true-positives respect all labeled as positives).  

 

Table 1   Cross table of binary machine learning predictions  
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 a   N ;   b Chi-square contribution ;   c  N/row total ;   d  N/column total ;   e  N/table total ;    (N : number of elements)

 

Table 2   SVM Binary Classification. Evaluation of Predictive Performance 

Binary classification SVM 

Dataset 
Classifiers Accuracy Sensitivity Specificity Precision 

Train Test 

142 61 all-α vs. all-β 87% 83% 90% 90% 

207 68 all-α vs. α+ β 76% 73% 78% 67% 

188 94 α+ β vs. all-β 75% 77% 72% 84% 

300 99 all-α vs. α/ β 84% 93% 50% 68% 

304 102 α/β  vs.  all-β 87% 90% 78% 93% 

359 119 α+ β vs. α/β 82% 84% 80% 87% 

 

Table 3  SVM Multi-class classification. Evaluation of predictive performance  

Multi-class classification  SVM 

Dataset cluster Accuracy Sensitivity Specificity Precision 

Train Test all-α 60% 55% 88% 40% 

510 171 α/ β 60% 73% 76% 74% 

α+ β 60% 44% 83% 50% 

all-β 60% 52% 94% 57% 

 

A special case is the α/ β set. This structural class displayed comparatively good values of all the evaluation parameters within 

the multi-class classification model (accuracy, sensibility and specificity around 75%. See Table 3). As mentioned before, α/ β 

showed very good accuracies during binary classification against all-α and all-β proteins (84% and 87%, respectively. See Table 

2). Globally considered, these results would point out that α/ β proteins could be slightly better identified than α+ β in both, binary 

and multi-class models. Taking into account that α/ β proteins tend to have parallel β strands systems whereas α+β are more likely 

to have anti-parallel β strands, there would be a structural foundation for the observed results. 

A clearer picture of this interpretation can be seen in Figure 1, where we have added two more evaluation estimators of the 

SVM Multi-class classification performance: precision and accuracy. While specificities are comparatively high in all classes, a 

prominent bulk can be clearly noticed in the case of α/ β proteins Fig. 1. At the contrary, α+ β proteins seem to be the most 

difficult group to classify in terms of virtually all the statistical evaluators (with the only exception of specificity). 

 

IV. CONCLUSIONS 

The initial goal of this research was to see if there are substantial correlations between the widespread used structural classes 

of proteins (all-α, all-β, α+ β and α/ β) and their three-dimensional pattern of residue-residue contact frequencies. This question 

arises from the fact that these classes were originally defined to create a global taxonomy founded on the spatial “covalent 

signature” displayed by the protein native structures. Along many years, these structural classes have proved to be extremely 

useful to classify the more than hundred thousand 3D-structures that are known at the present time. 

Nevertheless, how far is it possible to sustain that this taxonomy have real correlations with structural features beyond the 

obvious relationships with the secondary structure is a difficult question to answer. 

It is well known that alpha and beta structures are, by far, the most frequent (and stable) secondary structures in proteins. 

Categorized then in terms of these two groups seems therefore rather straightforward. The problem arises on how these two 

secondary motives meet together in different native structures. 
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Figure 1 Evaluation of performance prediction with Multi-class classification SVM 
 

With this regard, we have tried here to answer the question: Are α+ β and α/ β the only (or the best) way to categorize the 

combined structures? And, specifically: Is there any structural pattern in terms of individual residue contacts that we can 

objectively associate to one of the structural protein classes to justify them? 

To challenge this question we have used a machine learning approach to test if such a structural correlation exists. We have 

actually used a Support Vector based algorithm, widely supported by its previous success ion similar problems [20-21-22]. We 

have demonstrated that all the structural classes can be binary identify (classified) with a high level of predictive quality. These 

classifications can be made on the exclusive information of the contact frequencies patterns (and in absence of any kind of 

sequence features).  

As it could be supposed, all-α and all-β proteins can be easily discriminated with very good predictive performances around 

90%. Our results point out, moreover, that the other two structural classes have not the same structural correlation with contact 

frequencies: while α/ β seems to have a fair to good correlation (that could be eventually related to their particular parallel 

disposition of beta strands, contrary to the anti-parallel β disposition more likely in the α+ β group). This mild correlation is 

almost totally lost in this α+ β group when using a multi-class classification scheme, while the rest of classes still retain a certain 

one-against-all capacity to be discriminated.  

Putting all these observations together, our results would suggest that there is a strong 3D-structural foundation for mainly 

alpha and mainly beta proteins in terms of contact residues. In other words, these two groups would have specific contact patters 

that can be easily identified by a machine learning algorithm like the one we have used here. In the same line, we have found a 

light but significant evidence that proteins α/ β, in which alpha and beta elements tends to be separated by domains, should have 

also a specific contact signature that can be also identify by these kind of algorithms. Finally, in the case of α+ β, our results seem 

to suggest that either there is not a particular signature in terms of contact frequencies able to make a classifier that clearly 

distinguish them or, if such a specific signature exists, it wouldn’t be sufficient to clearly discriminate this structural class of 

proteins. This last finding partially questions the eventual structural foundation of this protein taxonomy and opens the question of 

whether α+ β class needs to be redefined to improve coherence of this all-inclusive protein taxonomy. 
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