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Abstract –This article presents the first hardware implementations of the BORON lightweight block cipher on general 

purpose field programmable gate arrays (FPGAs) using hardware description language. Herein, we evaluate several 

architectures for compatibility with the lightweight block cipher algorithm and report on both the first FPGA 

implementation results along with a comparison with standard lightweight block cipher algorithms. Of particular note, we 

confirm that BORON provides an excellent hardware performance algorithm for a lightweight block cipher in terms of 

high performance per unit area and power consumption. 

 

Index Terms — FPGA, BORON, Lightweight block cipher, Hardware implementation, CPS, Embedded system. 

 

I. INTRODUCTION 

In our current era, cyber-physical systems (CPSs) are advancing worldwide in a variety of industries. CPSs are high level 

mechanisms that can collect huge amounts of data from numerous physical space sensor networks, analyze the collected data in 

cyberspace, and ultimately apply the analyzed data to solving social problems and/or activating industries. In such systems, computer 

and sensor networks are often tightly integrated with the Internet. In a CPS society, both general purpose computers on high 

performance information processing networks and lightweight portable electronic devices such as sensor nodes need higher levels of 

security. To this end, standard block ciphers such as the triple data encryption standard (DES) [1] or advanced encryption standard 

(AES) [2] are widely available, but these ciphers cannot be applied to small, lightweight devices that are resource-constrained or have 

integrated circuits (ICs) with low processing power. Thus, many lightweight block ciphers are now being proposed for use with radio 

frequency identification (RFID) tags, small field programmable gate arrays (FPGAs), micro-controllers, and other lightweight devices.  

BORON [3], which is a lightweight block cipher designed for low power consumption and efficient software and hardware 

implementations in resource-constrained compact devices, is currently the most common currently proposed lightweight block cipher. 

It has a substitution-permutation network (SPN) structure with a substitution layer that consists of 16 4-bit substitution boxes 

(SBoxes) and a permutation layer built from block shuffle, round permutation, and exclusive-or operation layers. BORON utilizes a 

64-bit block size for plaintext or ciphertext, and 80- or 128-bit key sizes for the cipher key. The number of rounds is 24. BORON has 

a unique design that permits shift operation, round permutation, and exclusive-or operations in the round process. These unique 

elements provide an advantage to allow it to generate a large number of active SBoxes in fewer rounds against linear and differential 

cryptanalysis. In practice, BORON provides a number of potential applications for resource-constrained compact crypt devices and 

high throughput data encryption fields. 

This article begins by presenting several FPGA implementations of BORON and then compares their performance with recent 

lightweight block ciphers such as PRESENT, SIMON and several others. The first presented architecture computes one round per 

clock cycle, while the second and third are based on 32-bit and 16-bit word-serial architectures where they run numerous encryption 

process clock cycles. Our main contribution is the first round base roll architecture that is based on the 64-bit architecture presented 

in BORON [3], and the second and third are the 16- or 32-bit word-serial architectures that easily and consistently perform BORON 

computations based on finite state machine (FSM) models. The first architecture (one round per clock cycle) is actually better than 

the second and third architectures (16- or 32-bit word-serial), because it uses less area and power while providing better throughput. 

To verify this, we investigated various contexts installed on recent Xilinx FPGAs that were mounted on Spartan-3, Spartan-6 and 

Artix-7 platforms. 

The remainder of this article is organized the following. In Section II, we briefly present the specifications of the BORON 

encryption algorithms. Section III describes round-base and word serial iterative roll model architectures. In Section IV we describe 

the FPGA implementation results and present comparison results with other standard lightweight block cipher algorithms. Finally, 

we discuss the conclusions of this study and our future work in Section V. 

 

II. LIGHT-WIGHT BLOCK CIPHER ALGORITHM 

In this section, we describe the BORON specifications and data encryption algorithms. 

 

A Characteristic and Parameters 

 BORON is a lightweight block cipher substitution-permutation network (SPN) structure equipped with novel encryption function 

blocks that provide one of the most robust permutation layers and a strong non-linear layer. This structure enhances security against 
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standard cryptographic attacks such as linear and differential cryptanalysis. BORON, which is an iterative block cipher based on the 

repetition of total 24 rounds, is based on PRESENT cipher key scheduling and operates a 64-bit plaintext/ciphertext and a 80- or 128-

bit cipher key.  An overview of the encryption algorithm is provided in Fig. 1. More detailed specifications will be given in the 

following subsections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  BORON round function 

 

B Round Function 

The round function, which includes the key addition, nonlinear permutation, and linear layers, is described in Fig. 2. The key 

addition layer consists of bitwise key additions (denoted as the Add_round_key in Fig. 2). The nonlinear layer is an S-Box layer 

(hereafter denoted as the S_Box_Layer) built from the parallel application of 4  4 SBoxes to the intermediate state. The linear layer 

is built from block shuffle (hereafter denoted as the Block_Shuffle), round permutation (denoted as the Round_Permutation), and 

exclusive-or operation (hereafter denoted as the XOR_Operation). 

 

Each round consists of the following five functions: 

 

1. Key XOR with each round input data 

2. Nonlinear transformation with SBOX 

3. Block shuffle 

4. Round Permutation 

5. XOR operation 

 

Each 4-bit word connection in the round function is depicted in Fig. 3. Subsections B.1 to B.5 describe each function layer in 

detail. 

 

B.1. Add_Round_key Layer 

This function is a simple bitwise XOR (exclusive-or) layer between the current state and 64-bit round key, rk[i] at the i-th 

round. The suffix i ranges from 0 to 25. Detailed key scheduling is given in Subsection C. 

 

B.2. S_Box_Layer 

Like most other lightweight block ciphers, BORON uses an input 4-bit to output 4-bit SBox to create a 16 SBox layer. For each 

4-bit word, an identical S-Box is used. The BORON S-Box is described in Table 1 and its functions are presented in the following 

equations: 

 

y3 = (!x3&!x2&!x0)|(!x3&x1&!x0)|(!x3&x2&x0)|(x3&!x1&!x0)|(x3&!x2&x1&x0) 

                                  y2 = (!x3&!x2&!x1)|(!x2&!x1&!x0)|(!x3&x2&!x0)|(x3&x1&x0)|(x3&x2&x0)                 (1) 

y1 = (!x3&!x2&x0)|(!x3&!x1&!x0)|(x2&x1&x0)|(x3&!x2&x0)|(x3&x2&x1) 

                              y0 = (!x3&!x2&x1)|(!x2&x1&x0)|(!x3&x2&!x1)|(x2&!x1&x0)|(x3&!x2&!x1&!x0)|(x3&x2&x1&!x0) 
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Figure 2:  BORON round function 

 

 

Table 1: S-box table 

 

x 0 1 2 3 4 5 6 7 8 9 A B C D E 

S(x) E 4 B 1 7 9 C A D 2 0 F 8 5 3 

 

 

 

B.3. Block_Shuffle 

The Block_Shuffle is specified in the following Table 2, which also shows the 8 bit left cyclic shift operation performed for 

every 16-bit word. The basic Block_Shuffle rule is depicted in Fig. 3. 

 

 

Table 2: Block_Shuffle: 8 bit left cyclic shift in 16-bit word 

 

j 0 1 2 3 

B[j] 2 3 0 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Block_Shuffle 

 

 

B.4. Round_Permutation 

Round permutation is the left circular shift operation performed on each 16-bit word, as shown in Table 3. This table also 

describes the correspondence between each of the 16-bit words in the 64-bit intermediate data with left circular shift values. A 

simple depiction of the round permutation law is shown in Fig. 4. 
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Table 3: Round_Permutation: left circular shift values 

   

j 0 1 2 3 

r[j] 1 4 7 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Round_Permutation 

 

 

B.5. XOR_Operation Layer 

This function provides a simple bitwise XOR (exclusive-or) layer between 16-bit words and generates 16-bit 4 word outputs. 

The layer also generates a 64-bit (16-bit 4-word) output, as described the following equation: 

 

W'3 || W'2 || W'1 || W'0 = (W3 ^ W2 ^ W0) || (W2 ^ W0) || (W3 ^ W1) || (W3 ^ W1 ^ W0)  (2) 

 

where " ' " presents outputs,  "W" means 16-bit each words and "^" refers to exclusive-or operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: XOR_Operation 

 

 

C Key Schedule (Round Key and Permutation Key Generation) 

BORON key scheduling is similar to the existing PRESENT lightweight block cipher. In each round, the least significant 64 

bits of the 80- or 128-bit updated key are the round key that performs exclusive-or with round data in the Add_round_key function. 

Thus, round key generation is very simple in the BORON encryption algorithm. 

In this article, we present only the 80-bit key scheduling rule and the key register stored user defined 80-bit key. BORON uses 

the least significant 64 bits in the key register at each key scheduling as a round key. 

 

KEY_Register = K79K78...K2K1K0 

round_key = K63K62...K2K1K0 

 

The key update of BORON is the following manner. 
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1. KEY_Register <<<13 

2. [K3K2K1K0] <- S([K3K2K1K0]) 

3. [K63K62K61K60K59] <- [K63K62K61K60K59] ^ RCi 

 

where <<<n means left cyclic shift by n bit operation and RCi means the round counter value at i-th round. 

 

D Encryption (Decryption) Process 

The complete cipher consists of the iteration from 0 to 24 rounds discussed in Subsections B.1 to B.5. Due to the round key 

structures of BORON, the key scheduling function executes the encryption (decryption) process in the manner described in 

Subsection C in. In pseudo code, we have: 

 

Input: plaintext, key; 

Output: ciphertext; 

  

BORON-encrypt(plaintext, key) 

{ 

state  = plaintext; 

Key_Schedule(key); 

for (i=0; i<=24; i++) Round(state, round_key[i]); 

ciphertext = Add_round_key(state, round_key[25]); 

} 

  

Key_Schedule(key) 

{ 

KEY_Register = key; 

for (i=0; i<=25; i++) 

  { 

KEY_Register<<<13; 

[K3K2K1K0] = S_Box([K3K2K1K0]) 

[K63K62K61K60K59] = [K63K62K61K60K59] ^ i 

round_key[i] =  KEY_Register[K63K62....K1K0]; 

  } 

} 

  

Round(state, rk[i]) 

{ 

Add_round_key_Layer(state, rk[i]); 

S_Box_Layer(state); 

Block_shuffle(state); 

Round_Permutation(state); 

XOR_Operation(state); 

} 

 

where key is the 80-bit input cipher key, state is the 64-bit intermediate round data block and cipher text data after the last round, 

KEY_register is the stored 80-bit key, and round_key[i] is the 64-bit round key at an i-th round process. The BORON decryption 

process is simply the reverse of the encryption. Additional details about this particular encryption/decryption algorithm are 

available in the original BORON paper [3]. 

 

III. ARCHITECTURE 

An FPGA is an integrated circuit that users can configure in multiple ways. Since the reconfigurable components of an FPGA are 

divided into logic elements and storage elements, efficient implementation is a compromise between both combinatorial and 

sequential logic, and the resulting performance and power consumption. The evaluation viewpoint leads to different definitions of 

implementation efficiency. In this article, we selected following efficiencies: the first two are used in [4], and the third is proposed in 

[12]. 

 

A)  In terms of area performances, efficiency is given by the ratio of throughput [Mbps] to area [slices].  

B)  In terms of resource performance, efficiency is the ratio of the number of registers to the number of lookup tables (LUTs).  

C)  In terms of power regulation performance, efficiency is the ratio of power regulation [mW] to area [slices].  
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The larger the ratio of A, the better the performance efficiency per unit area. Ideally, the ratio of B should be close to the number of 

LUTs. Ideally, the ratio should be close to one in order to make the resources more efficient. When the efficiency of C is smaller, the 

power consumption per unit area is smaller. 

Because BORON is a lightweight and low power block cipher, it performs well on hardware and software implementations. 

Although the original BORON paper [3] showed a hardware implementation result on an application specific integrated circuit (ASIC) 

platform with a UMCL180 standard cell, it resulted in a lower estimation because, unlike multiplexers, there is no evaluation control-

logic circuit.  

In the following paragraphs, we will show all BORON hardware implementation results using a control-logic circuit. Our 

proposed architectures are a 64-bit iterative round function architecture or 16- or 32-bit word-serial architectures that was divided 

into element sub-functions from the round function. These definitions were selected to maximize the hardware efficiency or 

throughput, and to minimize the power regulation by means of trade-offs among these performance indexes. 

Depending on the optimization criteria, different architectures can be employed. Although optimization for maximum processing 

speed can ideally be achieved by a pipeline architecture, we did not select this architecture for applying BORON to lightweight 

devices because a loop architecture with only one round or division into element functions in round implementations seems to be the 

best choice for lightweight device applications requiring minimum area or power regulation. Additionally, we did not select 4-bit or 

8-bit word serial architectures because the round function of BORON consists of 16-bit data blocks in linear layers like the 

Block_Shuffle, Round_permutation, and XOR_Operation_Layer. In this study, we tried to maximize the previously efficiencies from 

A) to C). Our proposed BORON architectures are presented below. 

 

A. Round Iterative Roll Architectures 

For standard lightweight block cipher applications, we propose a 64-bit round iterative roll architecture with round-based 

implementation (See Fig. 6).  This round-based iterative architecture, which computes one round per clock cycle, is modeled as 

Proposal-I in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Round iterative roll architecture 

 

 

B. Word Serial Roll Architecture 

For times when space is at a premium, our word-serial roll implementation is proposed. Since this study chose 16- or 32-bit word 

for word serialization, we propose a 16- or 32-bit word serial roll BORON encryption architecture herein. First of all, we follow the 

next constraints in the word serial design strategy. 

 

B.I).  Merging S_Box_Layer and Block_Shuffle  

B.II). Using finite state machine description for word serialization 

B.III). Spending 1 clock cycle at Key_scheduling process  
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In constraint B.I), if the S_Box_Layer and Block_Shuffle are divided, extra cycles are spent for each part. This constraint is simple 

and effective when compactness and total latency are required in an encryption process. In constraint B.II), a finite state machine 

(FSM) description is applied to make it easier when designing a complex circuit. On the other hand, if the Key_scheduling is used as 

the serial process at each 16- or 32-bit word, we spend the same number of cycles as is used in the round process, so constraint B.III) 

is selected because of the higher throughput it provides in the total encryption process. Following these constraints, we propose the 

16- or 32-bit word serial architectures shown in Fig. 7. The FSM function block controls total serial processes in each function block. 

This 16- or 32-bit word serial architecture model is denoted as Proposal-II in the following Sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: 16- or 32-bit word serial architecture 

 

C. Optimization 

Here, we will describe our attempt to further optimize the XOR_Operation function block. Although in Section B, we explained 

that 16- or 32-bit word serial roll architectures have 16- or 32-bit inputs in XOR_Operation, 64-bit input was chosen for our increased 

optimization attempt because the XOR_Operation function block processing would be more complex than the 16- or 32-bit word 

operation utilized by Equation (2). In the following sections, this optimization architecture model is denoted as Proposal III. In 

addition to this optimization, we tested a more optimal model in which two exclusive-or function blocks were merged between the 

Add_round_key and XOR_Operation. However the results of this extra optimization attempt were unsatisfactory in comparison with 

the results of the other proposed architectures mentioned above, so we did not include them in this report. 

 

 

IV. RESULT AND EVALUATION 

In this section, we report on the observed practical implementations for each of the above-mentioned BORON architectures. All 

of the architectures and optimal models proposed in Section III allow the selection of a default parameter for each implementation. 

For the S_Box_Layer, Table 1 is used to show map circuits into LUTs instead of Equation (1).  The presented estimations of area, 

frequency, and power regulation are provided after logic synthesis, place, and route compilation by Xilinx ISE 14.2 on the Xilinx 

Spartan-3, Spartan-6 and Artix-7 platforms. The details of these target devices are xc3s700an-5ft484 Spartan-3, xc6slx45t-3fgg484 

Spartan-6, and xc7a100t-3fgg484 for the Artix-7 platform, with speed grades of -5, -3, and -3, respectively. Simple timing constraints 

were applied to the 100 MHz reference clock utilized in these experiments. All designs were verified with static timing analysis (STA) 

and pre- or post-layout simulation. In one verification, we presented a post-layout simulation waveform for the 64-bit round base roll 

architecture model (See Fig. 8). 
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Our results are presented in Table 4, where the FPGA resource requirements (in registers, LUTs and slices) corresponding to area, 

maximum operation frequency, maximum throughput, and power regulation are also provided. Looking at Table 4, we note that the 

largest area optimized by the BORON encryption core could achieve a throughput of 10.43 Mbps at the cost of 75 slices on the 

Spartan-6 FPGA platform in a 16-bit word Proposal-II architecture, whereas the highest throughput optimization occupied 92 slices 

and operated at 756.73 Mbps on the target Artix-7 FPGA platform in the Proposal-I architecture. Furthermore, the best power 

reduction optimization resulted in 4.83 mW power regulation at 13.37 Mbps throughput in a 16-bit word Proposal-III architecture. 

In relation to throughput, round-base architecture was found to have high value on every platform. From these results, it can be said 

that BORON architectures are very efficient for both high performance and lightweight devices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Post-layout simulation waveform - 64-bit round iterative roll architecture  

 

 

Table 5 enumerates the existing FPGA implementation results of other block ciphers - LED [5], PRESENT [6], [7], [8], HIGHT 

[8], ICEBERG [4], SEA [9], XTEA [10], Simon [11] as well as PRINTCIPHER[12] for use in performance comparisons with our 

BORON implementation results. Note that since numerous PRESENT and Simon hardware architectures have been proposed in the 

literature, we limited our comparison to those implementations using low-cost Spartan or Artix series FPGA devices with speed grade 

-5 or -3 and above. Furthermore, the implementation figures for ICEBERG and SEA are only available on Virtex-II or Virtex-4 series 

FPGAs. We would also like to point out that since it is quite difficult to provide a fair comparison among different implementations 

on FPGAs due to the diversity of such devices, packages, speed grade levels, as well as synthesis and implementation tools, additional 

information such as implementation platform and speed grade level is included in Table 5.  

Our experimental results show that, in the context of low-cost FPGA implementation, BORON can achieve larger throughput 

with a smaller area requirement when compared to all tested block ciphers except for ICEBERG. However, the implementation of 

the ultra-lightweight block cipher Simon is more efficient than that of BORON, primarily due to the complex internal encryption 

process used in the BORON encryption algorithm. This means that the encryption unit is more complicated and the critical path delay 

is much longer in the BORON hardware architecture than in the Simon core. Also an area of BORON on the Spartan-3 FPGA 

platform in Proposal-I architecture is as compact as one of PRINTCIPHER in round-base model, PRESENT [7] and XTEA at Spartan3 

FPGA platform. In the point of throughput, a throughput of BORON on the Spartan-3 FPGA platform in Proposal-I architecture is 

more than other block cipher results except for PRESENT [7] on the other Spartan-3 FPGA platforms. This is because almost all of 

the other lightweight block ciphers have more rounds in the encryption process, which results in lower frequency and less throughput 

than BORON. Additionally, even though BORON’s occupied areas (slices) are less compact than those of LED and PRINTCIPHER on 

the Artix-7 FPGA platform, BORON throughput is somewhat higher. Furthermore, in terms of the abovementioned efficiencies A) 

to C), BORON shows better values than other block ciphers in several architectures. Overall, BORON is sufficiently compact, 

consumes less power, and provides higher throughput on lightweight cipher applications. 

As for the first consideration, the serialization of 16- or 32-bit word does not appear to be efficient based on several performance 

results obtained for LUTs, registers, and slices. On the other hand, the results of general lightweight block ciphers are better than the 

BORON results, and benefit more from word serialization methodology. This indicates that BORON might be not be suitable for 

word serialization, and that 64-bit round base roll architecture is the most suitable BORON cipher algorithm because its encryption 

algorithm has 16-bit blocks in Block_Shuffle, Round_Permutation, and XOR_Operation layers. As for the second consideration, we 

found that on a Spartan-3 FPGA platform equipped with 4-LUT1, the 64-bit round base roll architecture is as good as, if not better 

than, the 16- or 32-bit word serial architectures in all areas except for power consumption. On the other platforms – Spartan-6 and 

Artix-7 FPGAs equipped with 6-LUT1, we found that 16- or 32-bit word serial architectures are more compact than the 64-bit round 

base architecture in terms of occupied LUTs and slices. Naturally, the 6-LUT FPGA platform is more suitable for compact 

implementation than the 4-LUT platform. 

 
1LUTs are 4-bit or 6-bit input function generators and constitute the basic building block of most recent reconfigurable devices 

like FPGAs [13,14,15]. 
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V. CONCLUSION AND FUTURE WORK 

In this article, we presented the first FPGA implementations of the BORON lightweight block cipher and analyzed the feasibility 

of several iterative BORON roll architectures on FPGAs. Additionally, we proposed round-based and word-serial architectures and 

one optimization method, and evaluated their efficiencies. The proposed round-based roll architecture for the BORON encryption 

core can encrypt a 64-bit plain text block with 450.78 Mbps throughput (25 clock cycles) on Spartan-6, while the proposed 16-bit 

word-serial architecture BORON encryption core recorded 10.43 Mbps of throughput with 75 slices on the same FPGA platform. 

Moreover, we implemented several possible trade-offs when executing encryption round processes. In particular, we confirmed the 

efficiency of our proposed word-serialization model in terms of low-cost and low-power aspects. When compared to other lightweight 

block cipher implementations on FPGAs such as XTEA, ICEBERG, SEA, SIMON, LED and PRINTCIPHER, we found that BORON 

achieved a higher throughput with modestly smaller area requirements.  

Our results show that BORON is a good encryption algorithm, not only for resource-constrained devices, but also for high-

throughput regions in CPS areas. Consequently, BORON can be considered to be an ideal cryptographic primitive for resource-

constrained environments and modest to high-throughput regions in CPS society. In our future work, we will investigate the resistance 

to side-channel attacks in our implementations and develop countermeasures to maintain resistance and reliability against such attacks. 

 

 

Table 4: FPGA implementation results for BORON block cipher with different architectures 

 

 

Architecture Device 

Area 

(Resources) 
Speed 

Power 

[mW] 

Efficiency 

Registe

rs 
LUTs Slices 

Latency 

[cycle] 

Max Freq. 

[MHz] 

Throughput 

[Mbps] 
Effi.A) Effi.B) Effi.C) 

Proposal I 

Spartan-3 
XC3S700A

N-5 

151 377 198 25 152.742 391.02 22.97 1.975 0.401 0.116 

Proposal II  

(32-bit word) 
159 583 304 150 113.302 24.17 17.36 0.080 0.273 0.057 

Proposal III 

(32-bit word) 
161 559 287 175 131.562 24.06 22.85 0.084 0.288 0.080 

Proposal II  
(16-bit word) 

159 570 293 250 134.735 8.62 17.36 0.029 0.279 0.059 

Proposal III 

(16-bit word) 
161 559 287 325 122.234 6.02 19.36 0.022 0.308 0.070 

Proposal I 

Spartan-6 

XC6SLX45

T-3 

151 269 92 25 176.087 450.78 17.00 4.900 0.561 0.185 

Proposal II 
 (32-bit word) 

165 295 99 150 161.212 34.39 21.29 0.347 0.559 0.215 

Proposal III 

(32-bit word) 
173 324 105 175 193.949 35.46 9.73 0.338 0.534 0.093 

Proposal II 

 (16-bit word) 
159 242 75 250 162.920 10.43 8.62 0.139 0.657 0.115 

Proposal III 

(16-bit word) 
166 297 85 325 147.145 7.24 8.54 0.085 0.559 0.101 

Proposal I 

Artix-7 

XC7A100T

-3 

151 266 92 25 295.596 756.73 11.03 8.225 0.568 0.120 

Proposal II 

 (32-bit word) 
153 285 99 150 234.632 50.05 5.87 0.506 0.537 0.059 

Proposal III 
(32-bit word) 

154 277 104 175 250.941 45.89 4.96 0.441 0.556 0.048 

Proposal II 

 (16-bit word) 
154 253 92 250 260.078 16.64 5.28 0.181 0.609 0.057 

Proposal III 
(16-bit word) 

154 277 104 325 271.518 13.37 4.83 0.079 0.388 0.028 
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Table 5: FPGA implementation result of other block ciphers 
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Block 

Ciphers 
devices 

Area 

(Resources) 
Speed 

Power 

[mW] 

Efficiency 

Registe

rs 
LUTs  slices 

Latency 

[cycle] 

Max Freq. 

[MHz] 

Throughput 

[Mbps] 
Effi.A) Effi.B) Effi.C) 

ICEBERG [4] Virtex-II ― ― 631 ― 254 1016 ― 1.61 ― ― 

PRESENT[6] Spartan3 
XC3S500 

― ― 271 
― ― ― ― ― ― ― 

PRESENT [7] 
Spartan3 

XC3S400-5 
― ― 202 32 254 508 ― 2.51 ― ― 

PRESENT [8] 
Spartan3 

XC3S50-5 
― ― 117 256 114.8 28.7 ― 0.24 ― ― 

HIGHT [8] 
Spartan3 

XC3S50-5 
― ― 91 ― 163.7 65.48 ― 0.72 ― ― 

LED [5] 

Spartan3 
XC3S50-5 

― 148 77 768 119.19 9.93 ― 0.13 ― ― 

Artix7 

XC7A100T
-3 

― 78 37 1120 378 21.6 ― 0.58 ― ― 

SEA [9] 
Virtex-II 

XC2V4000 
― ― 424 ― 145 ― ― 0.37 ― ― 

XTEA [10] 
Spartan3 

XC3S50-5 
― ― 254 112 62.6 35.77 ― 0.14 ― ― 

Simon [11] 

Spartan3 

XC3S500 
― 72 36 ― 136 3.60 ― 0.10 ― ― 

Spartan6 ― 40 13 ― ― ― ― ― ― ― 

PRINTCIPHER 

[12] 

Spartan3 
XC3S700A

N-5 

55 396 210 48 147.73 147.7 11.67 0.703 0.139 0.056 

61 174 91 1536 122.58 3.83 2.82 0.042 0.351 0.031 

Spartan6 

XC6SLX45
T-3 

62 154 48 768 254.39 15.9 8.13 0.331 0.403 0.169 

66 107 34 2304 128.35 2.67 6.07 0.079 0.617 0.170 

Artix7 

XC7A100T
-3 

55 276 139 48 293.51 293.5 8.2 2.11 0.199 0.059 

61 95 29 1584 184.16 5.58 3.09 0.19 0.642 0.107 
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